PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wind influence on the formation of nearshore currents in the southern Baltic: mumerical modelling results

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A two-dimensional numerical model was used for a simulation of vertical average longshore currents generated by both wind friction and wind-wave action in the nearshore zone. The modelling domain includes the southern part of the Baltic Proper (all boundaries were closed). Wind, uniform in space and varying in time, was the only forcing in the model. The correlation coefficient higher than 0.8 was obtained by model calibration versus the field measurements of currents conducted at the Lubiatowo field station (southern Baltic) during about 1.5 months in 2006. Comparative simulations of total currents including both wind-induced drift and wave components, and of total currents including only a wind-induced drift component, showed that the input of the drift component into currents in the nearshore zone is greater than commonly believed. Wind-induced drift strongly dominates outside the zone of wave transformation, and its input into the total resulting currents remains noticeable even in a zone between the shoreline and the depth of the first wave breaking. Thus, wind-induced drift constitutes up to 50% of the resulting longshore currents for longshore winds and no less than 20% of the longshore component of currents for winds at 45 degrees to the longshore direction.
Słowa kluczowe
Twórcy
autor
  • Institute of Oceanology of Russian Academy of Sciences, Atlantic Branch, pr. Mira, 1, Kaliningrad 236000, Russia, ans@smtp.ru
Bibliografia
  • 1. Allard R., Rogers E., Carroll S. N., Rushing K. V. (2002), Software Design Description for the Simulating WAves Nearshore Model (SWAN), Storming Media, Washington.
  • 2. Brown J. M.,Wolf J. (2009) Coupledwave and surge modelling for the eastern Irish Sea and implications for model wind-stress, Continental Shelf Research, 29, 1329–1342.
  • 3. Chao X., Jia Y., Shields Jr. E. D., Wang S. S. Y., Cooper C. M. (2008), Three-dimensional numerical modelling of cohesive sediment transport and wind wave impact in a shallow oxbow lake, Advances in Water Resources, 31, 1004–1014.
  • 4. Digital Topography of the Baltic Sea (2008), The Leibniz Institute for Baltic Sea Research. URL: http://www.io-warnemuende.de/topography-of-the-baltic-sea.html
  • 5. Ding Y., Wang S. S. Y., Jia Y. (2003), Numerical studies on simulations of waves and nearshore currents in non-orthogonal mesh system, International Conference on Estuaries and Coasts,November 9–11, Hangzhou, China, 719–726.
  • 6. Eldeberky Y., Battjes J. A. (1995), Parameterization of triad interactions in wave energy models, Proceedings Coastal Dynamics 95, September 4–8, Gdansk, Poland, IBW PAN, 140–148.
  • 7. Gioia G., Bombardelli F. A. (2002), Scaling and Similarity in Rough Channel Flows, Physical Review Letters, 88, 014501-1 – 014501-4.
  • 8. Longuet-Higgins M. S. (1970), Longshore Currents Generated by Obliquely Incident SeaWaves, Parts 1 and 2, Journal of Geophysical Research, 75 (33), 6778–6801.
  • 9. Massel S. R. (1989), Hydrodynamics of Coastal Zones, Oceanography Series, 48, Elsevier Science & Technology.
  • 10. MIKE 21/3 Coupled Model FM (2005), User Guide, DHI Software.
  • 11. MIKE 21 & MIKE 3 Flow Model FM Hydrodynamic and Transport Module (2005) Scientific Documentation, DHI Software.
  • 12. MIKE 21 Spectral Wave Module (2005), Scientific Documentation, DHI Software.
  • 13. Ostrowski R., Pruszak S., Skaja M., Szmytkiewicz M. (2010a), Variability of Hydrodynamic Coastal Processes in the East Part of the Gulf of Gdansk, Archives of Hydroengineering and Environmental Mechanics, 57 (2), 139–153.
  • 14. Ostrowski R., Pruszak S., Skaja M., Szmytkiewicz M., Trifonova E., Keremedchiev S., Andreeva N. (2010b), Hydrodynamics and lithodynamics of dissipative and reflective shores in a view of field investigations, Archives of Hydroengineering and Environmentals Mechanics, 57 (3–4), 219–241.
  • 15. Pruszak S., Szmytkiewicz P., Ostrowski R., Skaja M., Szmytkiewicz M. (2008), Shallow-water wale energy dissipation in a multi-bar coastal zone, Oceanologia, 50 (1), 43–58.
  • 16. Seifert T., Kayser B. (1995), A high resolution spherical grid topography of the Baltic Sea, Meereswiss. Ber, (9), 72–88.
  • 17. Shadrin I. F. (1972), Coastal currents of on-tidal sea, Nauka, Moskva (in Russian).
  • 18. Smagorinsky J. (1963), General Circulation Experiment with the Primitive Equations, MonthlyWeather Review, 91 (3), 99–164.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BATA-0019-0030
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.