PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structure of Turbulent Vortices in a Compound Channel

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In spite of many investigations performed on turbulent flows, their structure has not yet been sufficiently explored. The difficulty is that, when a detailed picture of the velocity field is necessary, the widely employed Particle Image Velocity (PIV) method can provide photos covering only a short interval of flow, which cannot include the largest structures of turbulent flow, and consequently these structures cannot be investigated. In this study, the author tried to obtain necessary data about the processes occurring in the flow by analyzing instantaneous velocity measurements carried out by 3D means. A measurement at the points of a low cross-section takes at least 1 minute. During this time all vortex structures, including the largest, occur repeatedly many times and can be studied. The analysis of such measurements was the aim of this article. The process of the generation of vortices at the bottom and their further development, including the conditions of the development of the largest vortices, has been investigated. The results of these investigations are discussed in this article.
Twórcy
autor
Bibliografia
  • 1. Adrian R. J., Meinhart C. D., Tomkins C. D. (2000) Vortex organization in the outer region of turbulent boundary layer, J. Fluid Mech., 422, 1–54.
  • 2. Albayrak I., Lemmin U. (2007) The effect of water depth on the dynamics of secondary currents in turbulent open-channel flow over rough bed. River Flow 2008, Proceedings of the international conference on fluvial hydraulics, Turkey, September 3–5, 2008, 271–279.
  • 3. Albayrak I., Lemmin U. (2008) A study of open-channel surface flow dynamics using Large Scale Particle ImageVelocimetry (LSPIV). River Flow2008, Proceedings of the international conference on fluvial hydraulics, Turkey, September 3–5, 2008, 195–202.
  • 4. Bravo H. R., Meinecke J.W. (1997) Entrance flow and the achievement of uniform fully developed open channel flow, Proceedings 27th Congress IAHR, Theme A, San Francisco, CA, 726–728.
  • 5. Breuer M., Haenel D. (1989) Solution of the 3-D incompressible Navier-Stoces equations for the simulation of vortex breakdown, Proc. of 8th GAMM conf., 29, 42–51.
  • 6. Cellino M., Graf W. H. (1999) Sediment-laden flow in open-channels under non-capacity and capacity conditions, Am. Soc. Civ. Eng., J. Hydr. Engr., 125 (5), 455–462.
  • 7. Cuthbertson A. J. S., Ervin D. A. (1999) The interaction between turbulent vortices and fine sediment particles – a possible reason for enhanced settling characteristics? Proc. 28th IAHR Congr., Graz, Austria, CD-ROM.
  • 8. CzernuszenkoW. (2002) Turbulent shear stresses and prime velocity distribution in compound channels, Archives of Hydro-Engineering and Environmental Mechanics, 49 (3), 3–17.
  • 9. CzernuszenkoW.,Kozioł A., Rowinski P. (2007) Measurements of 3D turbulent structure in a compound channel, Archives of Hydro-Engineering and Environmental Mechanics, 54 (1), 3–21.
  • 10. CzernuszenkoW., Rowinski P. (2008) Reynolds stresses in compound open channel flow-flume experiments. River flow 2008, Proceedings of the international conference on fluvial hydraulics, Turkey, September 3–5, 2008, 289–297.
  • 11. Grishanin K. V. (1969) Dynamics of River Flow, Gidrometeorologicheskoe Izdatelstvo, Leningrad, 428 (in Russian).
  • 12. Klaven A. B. (1966) Investigation on the Structure of Turbulent Flow, Trudy Gosudarstvennovo Gidrologicheskovo Instituta, Vypusk 136, 65–76 (in Russian).
  • 13. Nezu I., Azuma R. (2004) Turbulence characteristics and interaction between particles and fluid in particle-laden open channel flows, Journal of Hydraulic Engineering, 130 (10), 988–1001.
  • 14. Nezu I., Nakahawa H. (1993) Turbulence in open channels, IAHR monograph series, A. A. Balkema. Rotterdam, The Netherlands.
  • 15. Rimkus A., Vaikasas S. (2001) The length of laboratory channels necessary for the stabilization of suspension flow, Water Management Engineering Transactions, 18 (40), Lithuanian Institute of Water Management. 59–64.
  • 16. Robinson K. (1991) Coherent motions in the turbulent boundary layer, Fluid Mech., 23, 601–639.
  • 17. Rodriguez J. F., Garcia M. H. (2008) Laboratory measurements of 3-D flow patterns and turbulence in straight open channel with rough bed, Journal of Hydraulic Research, 46 (4), 454-465.
  • 18. Vanoni V. A. A., Nomicos G. N. (1959) Resistant properties of sediment-laden streams, J. Hydr. Div. Am. Soc. Civ. Engrs., 85 (HY5).
  • 19. Widera P., Ghorbaniasl G., Lacor Ch. (2009) Study of the sediment transport over flat and wavy bottom using large-eddy simulation, Journal of Turbulence, 10 (33), 1–20.
  • 20. Yalin M. S. (1992) River Mechanics, Pergamon Press, Oxford, England.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BATA-0019-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.