PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Blind Estimation of Linear and Nonlinear Sparse Channels

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a Clustering Based Blind Channel Estimator for a special case of sparse channels - the zero pad channels. The proposed algorithm uses an unsupervised clustering technique for the estimation of data clusters. Clusters labelling is performed by a Hidden Markov Model of the observation sequence appropriately modified to exploit channel sparsity. The algorithm achieves a substantial complexity reduction compared to the fully evaluated technique. The proposed algorithm is used in conjunction with a Parallel Trellis Viterbi Algorithm for data detection and simulation results show that the overall scheme exhibits the reduced complexity benefits without performance reduction.
Rocznik
Tom
Strony
65--71
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Department of Science and Technology of Telecommunications University of Peloponnese, Tripolis, 22100 Greece, kristina@uop.gr
Bibliografia
  • [1] W. F. Schreiber, “Advanced television systems for terrestrial broadcasting: Some problems and some proposed solutions”, Proc. IEEE, vol. 83, pp. 958–981, 1995.
  • [2] S. Ariyavisitakul, N. R. Sollenberger, and L. J. Greenstein, “Tap selectable decision feedback equalization”, IEEE Trans. Commun., vol. 45, pp. 1497–1500, 1997.
  • [3] M. Kocic, D. Brady, and M. Stojanovic, “Sparse equalization for real time underwater acoustic communications”, in Proc. MTS/IEEE Conf. “Challenges of our changing global environment” OCEANS’95, San Diego, CA, USA, 1995, pp. 1417–1422.
  • [4] J. A. Tropp and S. J. Wright, “Computational methods for sparse solution of linear inverse problems”, IEEE Proc., vol. 98, pp. 948–958, 2010.
  • [5] B. Babadi, N. Kalouptsidis, and V. Trokh, “SPARLS: The sparse RLS algorithm”, IEEE Trans. Sig. Proces., vol. 58, pp. 4013–4025, 2012.
  • [6] Y. Chen and A. O. Hero, “Recursive ℓ1,¥ Group lasso”, IEEE Trans. Sig. Proces., vol. 60, pp. 3978–3987, 2012.
  • [7] G. Mileounis, N. Kalouptsidis, B. Babadi, and V. Tarokh, “Blind identification of sparse channels and symbol detection via the EM algorithm”, in Proc. IEEE DSP Conf., Corfu, Greece, 2011, pp. 1–5.
  • [8] K. Georgoulakis and S. Theodoridis, “Blind and semi-blind equalization using hidden Markov models and clustering techniques”, Sig. Proces., vol. 80, pp. 1795–1805, 2000.
  • [9] P. Wang and W. Ser, “On cluster-based channel identification”, Procedia Engin., vol. 29, pp. 2699–2704, 2012.
  • [10] R. Niazadeh, S. H. Ghalehjegh, M. B. Zadeh, and C. Jutten, “ISI sparse channel estimation based on SLO and its application in ML sequence-by-sequence equalization”, Sig. Proces., vol. 92, pp. 1875–1885, 2012.
  • [11] N. C. McCinty, R. Kennedy, and P. Hoeher, “Parallel trellis Viterbi algorithm for sparse channels”, IEEE Communi. Lett., vol. 2, pp. 143–145, 1998.
  • [12] B. Cristea, D. Roviras, and B. Escrig, “Maximum likelihood sequence estimation based on periodic time-varying trellis for LPTVMA systems”, in Proc. EUSIPCO 2006, Florence, Italy, 2006.
  • [13] J. Mietzner, S. Hoeher, S. Land, and P. Hoeher, “Trellis equalization for sparse ISI channels revisited”, in Proc. IEEE Int. Symp. Inform. Theory ISIT 2005, Adelaide, Australia, 2005, pp. 229–233.
  • [14] F. K. H. Lee and P.J. McLane, “Iterative parallel-trellis MAP equalizers with nonuniformly-spaced prefilters for sparse multipath channels”, in Proc. 56th VTC 2002, Vancouver, Canada, 2002, vol. 4, pp. 2201–2205.
  • [15] Y. L. Jeng and C. C. Yeh, “Cluster based blind nonlinear channel estimation”, IEEE Trans. Sig. Proces., vol. 45, pp. 1161–1172, 1997.
  • [16] K. Georgoulakis and S. Theodoridis, “Efficient clustering techniques for channel equalization in hostile environments”, Sig. Proces., vol. 58, pp. 153–164, 1997.
  • [17] T. M. Martinetz, S. G. Bekovich, and K. J. Schulten, “Neuralgas network for vector quantization and its application in time- series prediction”, IEEE Trans. Neural Netw., vol. 4, pp. 558–569, 1993.
  • [18] S. Theodoridis and K. Koutroubas, Pattern Recognition. New York: Academic Press, 1998.
  • [19] G. Kawas and R. Vallet, “Joint parameter estimation and symbol detection for linear or nonlinear unknown channels”, IEEE Trans. Commun., vol. 42, pp. 2406–2413, 1994.
  • [20] F. Balazs and S. Imre, “Modified radial basis network based blind channel estimation”, in Proc. SoftCOM 2004, Dubrovnik, Croatia, 2004, pp. 449–452.
  • [21] R. Tibshirani, “Regression shrinkage and selection via the lasso”, J. Royal Stat. Soc., vol. 58, pp. 267-288, 1996.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BATA-0019-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.