PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recurrent Method for Blocking Probability Calculation in Switching Networks with Overflow Links

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents a new recurrent method for modelling multi-service switching networks with overflow links. In the proposed method, the blocking probability for a given stage of the switching network is determined on the basis of the characteristics of the preceding stage. A particular attention is given to a possibility of a considerable reduction of the internal blocking probability of the switching network that would result from an application of additional overflow links between neighbouring switches of the first stage of the network. The results of the analytical modelling of selected multi-service switching networks with overflow links in the first stage are compared with the results of the simulation experiments. The study confirms the accuracy of all the adopted theoretical assumptions in the proposed analytical model of the multi-service switching network.
Słowa kluczowe
Rocznik
Tom
Strony
56--64
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
autor
Bibliografia
  • [1] W. Kabaciński, Nonblocking Electronic and Photonic Switching Fabrics. Berlin: Springer, 2005.
  • [2] A. Jajszczyk, Wstęp do telekomutacji. Warszawa: Wydawnictwa Naukowo-Techniczne, 1998 (in Polish).
  • [3] R. Fortet, Systeme Pentaconta Calcul d’orange. Paris: LMT, 1961.
  • [4] M. Stasiak, “Computation of the probability of losses in switching systems with mutual aid selectors”, Rozprawy Elekrotechniczne, J. Polish Academy of Science, vol. XXXII, no. 3, pp. 961–977, 1986 (in Polish).
  • [5] H. Inose, T. Saito, and M. Kato, “Three-stage time-division switching junctor as alternate route”, Electron. Lett., vol. 2, no. 5, pp. 78–84, 1966.
  • [6] L. Katzschner, W. Lorcher, and H. Weisschuh, “On an experimental local PCM switching network”, in Proc. Int. Seminar Integr. System Speech, Video Data Communi., Zurich, Switzerland, 1972, pp. 61–68.
  • [7] V. Ershov, Switching systems in integrated digital networks. Moskov: Radio and Swiaz, 1978 (in Russian).
  • [8] M. Stasiak, M. Głąbowski, A. Wiśniewski, and P. Zwierzykowski, Modeling and Dimensioning of Mobile Networks. New York, USA: Wiley, 2011.
  • [9] V. Iversen, Ed., Teletraffic Engineering Handbook. Geneva: ITU-D, Study Group 2, Question 16/2, Jan. 2005.
  • [10] M. Stasiak and P. Zwierzykowski, “Performance study in multi-rate switching networks with additional inter-stage links”, in Proc. Seventh Adv. Int. Conf. Telecommun. AICT 2011, M. Głąbowski and D. K. Mynbaev, Eds. St. Maarten, The Netherlands Antilles, 2011, pp. 77–82.
  • [11] M. Stasiak and P. Zwierzykowski, “Multi-service switching networks witch overflow links”, Image Process. Commun., vol. 15, no. 2, pp. 61–71, 2010.
  • [12] R. Wilkinson, “Theories of toll traffic engineering in the USA”, Bell System Tech. J., vol. 40, pp. 421–514, 1956.
  • [13] N. Binida and W. Wend, “Die Effektive Erreichbarkeit für Abnehmerbundel hinter Zwischenleitungsanungen”, Nachrichtentechnische Zeitung (NTZ), vol. 11, no. 12, pp. 579–585, 1959 (in German).
  • [14] A. Kharkevich, “An approximate method for calculating the number of junctions in a crossbar system exchange”, Elektrosvyaz, no. 2, pp. 55–63, 1959.
  • [15] D. Bazlen, G. Kampe, and A. Lotze, “On the influence of hunting mode and link wiring on the loss of link systems”, in Proc. 7th Int. Teletraffic Congr., Stockholm, Sweden, 1973, pp. 232/1–232/12.
  • [16] A. Lotze, A. Roder, and G. Thierer, “PPL – a reliable method for the calculation of point-to-point loss in link systems”, in Proc. 8th Int. Teletraffic Congr., Melbourne, Australia, 1976, pp. 547/1–44.
  • [17] K. Rothmaier and R. Scheller, “Design of economic PCM arrays with a prescribed grade of service”, IEEE Trans. Commun., vol. 29, no. 7, pp. 925–935, 1981.
  • [18] M. Stasiak, “Blocage interne point a point dans les reseaux de connexion”, Annales des T´el´ecommunications, vol. 43, no. 9–10, pp. 561–575, 1988 (in French).
  • [19] A. Lotze, “History and development of grading theory”, in Proc. 5th Int. Teletraffic Congr., New York, NY, USA, 1967, pp. 148–161.
  • [20] E. Ershova and V. Ershov, Digital Systems for Information Distribution. Moscow: Radio and Communications, 1983 (in Russian).
  • [21] M. Stasiak, “Combinatorial considerations for switching systems carrying multi-channel traffic streams”, Annales des T´el´ecommunications, vol. 51, no. 11–12, pp. 611–625, 1996.
  • [22] M. Stasiak and P. Zwierzykowski, “Point-to-group blocking in the switching networks with unicast and multicast switching”, J. Perform. Eval., vol. 48, no. 1–4, pp. 249–267, 2002.
  • [23] M. Głąbowski and M. Stasiak, “Point-to-point blocking probability in switching networks with reservation”, Annales des T´el´ecommunications, vol. 57, no. 7–8, pp. 798–831, 2002.
  • [24] M. Głąbowski, A. Kaliszan, and M. Stasiak, “Modelling product-form state-dependent systems with BPP traffic”, Perform. Eval., vol. 67, pp. 174–197, 2010.
  • [25] M. Głąbowski, “Recurrent calculation of blocking probability in multiservice switching networks”, in Proc. Asia-Pacific Conf. Commun., Busan, South Korea, 2006, pp. 1–5.
  • [26] M. Głąbowski, “Recurrent method for blocking probability calculation in multi-service switching networks with BPP traffic”, in Proc. 5th Eur. Perform. Engin. Worksh. Comp. Perform. Engin. CEPEW’08, LNCS, N. Thomas and C. Juiz, Eds., vol. 5261. Springer, 2008, pp. 152–167.
  • [27] M. Głąbowski and M. Stasiak, “Internal blocking probability calculation in switching networks with additional inter-stage links”, in Information Systems Architecture and Technology, A. Grzech, L. Borzemski, J. Świątek, and Z. Wilimowska, Eds. Oficyna Wydawnicza Politechniki Wrocławskiej, 2011, vol. Service Oriented Networked Systems, pp. 279–288.
  • [28] M. Głąbowski and M. D. Stasiak, “Switching networks with overflow links and point-to-point selection”, in Information Systems Architecture and Technology, A. Grzech, L. Borzemski, J. Świątek, and Z. Wilimowska, Eds. Oficyna Wydawnicza Politechniki Wrocławskiej, 2012, vol. Networks Design and Analysis, pp. 149–159.
  • [29] M. Głąbowski and M. D. Stasiak, “Internal blocking probability calculation in switching networks with additional inter-stage links and Engset traffic”, in Proc. 8th IEEE, IET Int. Symp. Commun. Syst., Netw. Digit. Sig. Process. CSNDSP 2012, Poznań, Poland, 2012.
  • [30] C. Clos, “A study of non-blocking switching networks”, Bell Syst. Techn. J., pp. 406–424, 1953.
  • [31] J. Roberts, V. Mocci, and I. Virtamo, Eds., Broadband Network Teletraffic, Final Report of Action COST 242. Berlin: Commission of the European Communities, Springer, 1996.
  • [32] J. Kaufman, “Blocking in a shared resource environment”, IEEE Trans. Commun., vol. 29, no. 10, pp. 1474–1481, 1981.
  • [33] J. Roberts, “A service system with heterogeneous user requirements – application to multi-service telecommunications systems”, in Proc. Perform. Data Commun. Syst. their Appl., G. Pujolle, Ed. Amsterdam: North Holland, 1981, pp. 423–431.
  • [34] C. Lee, “Analysis of switching networks”, Bell Syst. Techn. J., vol. 34, no. 6, 1955.
  • [35] M. Stasiak, “Blocking probability in a limited-availability group carrying mixture of different multichannel traffic streams”, Annales des T´el´ecommunications, vol. 48, no. 1-2, pp. 71–76, 1993.
  • [36] J. Tyszer, Object-Oriented Computer Simulation Of Discrete-Event Systems. Kluwer, 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BATA-0019-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.