
Paper UML Simulation of a Topology

Configuration Model

Zbigniew Zielińskia, Andrzej Stasiaka, and Włodzimierz Dąbrowskib

a Military University of Technology, Warszawa, Poland
b Warsaw University of Technology, Polish-Japanese Institute of Information Technology, Warsaw Poland

Abstract—The article presents the application of simulation

methods for topological models to analyze and design informa-

tion systems. By using UML extensions and the UAL language

it is possible not only to build a topological model for software,

but also to perform efficient simulations of topological models.

Additionally, it is possible to take into account the restrictive

conditions stored in UAL and OCL languages. To execute the

simulation the authors used an simulator from IBM. These

concepts and methods are illustrated by examples.

Keywords—configuration topology, system modeling, UML

model simulation.

1. Introduction

Methods for modeling information systems using UML is

now widely used and can be regarded as a standard in

modeling systems [1]. For some time, modeling in UML

is complemented with the possibility of executing simula-

tion models in real time [2]–[4]. The benefits of executing

simulation models are undeniable. By carrying out simu-

lation models it is possible to: better understand the dy-

namics of the modeled systems and processes, the early

detection of errors in modeling the information system ar-

tifacts, the early validation of models to the specifications

of the designed systems, the analysis of different variants

of constructed solutions, the selection of the best solution

in a given situation topology, and the detection and pre-

vention of deadlocks and other undesirable factors in the

processes of communication between system artifacts. The

use of simulation is conducive to the usage of the UAL

language (UML Action Language) to describe the models.

Due to this approach a more precise formal description can

be applied [2], [4], [5]. A more formal description of the

action and semantics facilitates the automatic verification

of the correctness of models. In the work [6], thanks to the

integration of security models with the architecture models

(described in UML) of a specialized system with multilevel

security (MLS-type system) and simulation of these mod-

els, the verification of many security problems concerning

the designed system was possible at the modeling stage.

Among the recently developed project models there is

a model of a system topology. In this paper a discussion will

be conducted on the use of simulation methods for design

artifacts expressed in UML, in particular, for topological

models.

2. Topology Models

The concept of topology is understood as the type of model

that illustrates the dependency between the resources of the

modeled information system [7]–[9]. An important feature

of the topological approach is the ability to plan and then

verify the modeled deployment scenarios.

Planning the deployment architecture is a difficult process

that can lead to the emergence of a large number of errors.

The risk of error can be reduced by applying the following

recommendations at the design stage [10], [11]:

– the introduction of the architecture deployment plan-

ning process at an early stage of manufacturing ap-

plications;

– the communication link between the structure and the

architecture deployment by dividing and the re-use of

architecture topology templates;

– the use of early deployment architecture validation

scenario, and thus the identification of artifacts in-

compatibility of the model.

Deployment modeling is a bridge between modeling and

application development. The topology model defines the

elements of infrastructure and their location and dependen-

cies between them.

Application of modeling using the topology shortens the

life cycle of the application as follows:

– the application developer can check whether the ap-

plication meets the requirements of the deployment;

– the architectural engineer can be sure that the estab-

lished requirements of architecture deployment, the

application can be run correctly;

– the analyst can implement best practices and com-

pany standards for architecture deployment and test

scenarios to reproduce the proper architecture deploy-

ment.

By the concept of topology, we mean the deployment archi-

tecture model. This model is composed of artifacts called

elements. A single element represents an application frag-

ment or fragments of deployed infrastructure (including

servers, server software, databases, operating systems) and

46



UML Simulation of a Topology Configuration Model

be linked with other elements. An element contains infor-

mation in its structure on the requirements and limitations

that must be fulfilled by it and the associated element.

Modeling deployment architecture involves the construction

of models at several different levels of abstraction. These

levels are as follows [7], [8], [12]:

– application structure level,

– logical model level,

– Physical model level,

• application deployment level.

3. Model Simulation

The UML action language (UAL) is a part of the stan-

dard maintained by the Object Management Group (OMG)

which is an extension of the UML language standard, as

a semantics language of the UML action language. UAL

is used to construct executable models that are indepen-

dent from the language, as well as platforms and tools. In

earlier practices, as defined in the MDD (Model Driven De-

velopment), system designers create “executable code” us-

ing notation, a specific implementations language (Platform

Specific Implementation (PSI), ex.: C, C++, Java, C#). In

addition, developers have to track changes in each of them

and tools for their implementation. Currently, the Object

Management Group (OMG) developed a language of action

semantics and created a standard fUML (Foundational Sub-

set for Executable UML Models) – the fundamental subset

for executable UML models and the Action Language for

Foundational UML (Alf).

UAL is a subset of definitions defined in the Alf standard,

which allows to define a complete system at a higher level

of abstraction, and then allows to simulate the model (cre-

ated in UAL), its debugging and code generation. With

the standardization of UAL, the designers will not have

to learn many new programming languages – till now re-

lated to specific instruments, and they are only limited to

the ability to transform models stored in UAL. With UAL,

system designers can build it, independently from the tar-

get technology platform (PSM and PSI), and the created

model can be debugged, simulated, and then started in or-

der to find and correct the errors. Developed models are

also independent from the target platform implementation

and allows for its determination through choosing the ap-

propriate transformation (UAL2PSI).

4. Simulating Models

Currently, it is possible to simulate the behaviors described

in UML models. All kinds of behaviors described in UML

are namely supported: activity, interaction, state of the ma-

chines, and behaviors described in UAL. During simulation,

the performed UML diagrams are animated – providing

information, such as: another element to perform, elements

already performed, the current position of the tokens, ac-

tive states, etc. The traditional functions of the debugger

are also available, such as traps, restart, suspend and re-

newal. One can also “inject defined events” in event-driven

simulation models.

The model simulation can be used together with the con-

figuration planning (Deployment Planning). It allows to vi-

sualize the execution of interaction, described in UML,

between elements of the topology model – units of im-

plementation. Communication between them will be ani-

mated and it is possible to visualize the history of com-

munication with numbered arrows overlapping topology

diagrams.

To be able to simulate models UML and topology should

be equipped with Rational Software Architect with an ad-

ditional package: Rational Software Architect Simulation

Toolkit.

The solution gives the following benefits:

– enables early understanding of the system so that one

can remove the potential drawbacks of their behavior

(even during modeling);

– allows to understand how the behavior affects the

static structure of the model after developing a dia-

gram of the complex structure;

– allows to understand how the behavior affects the dis-

tribution and also to understand the potential impact

of the available infrastructure of the built application;

– simulations can work on UML models further spec-

ified by the Action Language (UAL), if we assume

building strict specifications; this means that simula-

tions can be performed at a very early design stage;

then one can try to eliminate any serious design

errors and problems, particularly in relation to the

availability of infrastructure and networks, as well as

later, in order to identify logical errors in behavior.

The current version of the simulator allows:

– creating (stopping/restarting) a session of the exe-

cuted model;

– selecting paths of implementation in model execution

session;

– inserting traps in the model execution session;

– variables modification in the model execution ses-

sion;

– directing the model execution session to a specific

element of the UML diagram;

– execution of models written in UAL (currently it is

a textual representation and not pictographic);

– running multiple model execution sessions;

– deleting events that are sent to the model execution

session;

47



Zbigniew Zieliński, Andrzej Stasiak, and Włodzimierz Dąbrowski

– reviewing the history of messages (e.g., for compar-

ing scenario execution paths);

– selection of events and signals in the model execution

session;

– animating topology models.

5. Simulation Environment

The IBM Rational Software Architect (RSA) environment

is a set of integrated tools that support the manufacturing

processes (design and the construction of the software),

using the technique of modeling in UML [1], [10], [11].

Such an integrated application allows to unify all activities

related to the mentioned stages of software engineering.

Consolidating multiple functionalities in one tool allows to

significantly increase the productivity, resulting in higher

work efficiency of a team of analysts, designers, and pro-

grammers. RSA makes it possible to verify the architecture

design, which allows for easier change management, con-

tributing to raising the quality of the created software.

Within RSA the following modules can be specified [2], [3]:

• Rational Software Modeler (a tool for visual model-

ing and designing applications);

• Rational Web Developer (visual tool designed for

web services and web application developers);

• Rational Aplication Developer for WebSphere Soft-

ware (an integrated environment that allows to de-

sign, create, analyze, test, profile, and deploy web

applications and portals, applications in Java and

J2EE technologies, and applications that use Web

Services);

• Rational Software Architect Simulation Toolkit –

an additional package that provides functionality for

simulation and animation of UML and topological

models.

RSA is a tool that supports the Model Driven Development

approach that is focused on the production of models and

their transformations. Rational Software Architect enables

the use of forward engineering methods (e.g., transforma-

tion from UML to C++) and reverse engineering meth-

ods (creation of UML models based on existing application

code such as C++).

6. Example

As an example of simulation models we will consider a pro-

cess fragment of manufacturing software support recruit-

ment activities at one of the Polish universities on the first

degree studies. The recruitment process involves the fol-

lowing entities:

• Candidate – the person applying for the right to study,

who has successfully completed the matriculation ex-

amination;

• Maturity Exam Committee – (in our system) is the

authority that certifies compliance of maturity exam

results with those obtained by the candidate (the Re-

gional Examination Commission forwards the results

to the Central Examination Board);

• Recruitment Commission – is an institutional body,

appointed by the rector who carries out the process

of recruiting candidates. The commission announces

the results of the recruitment process to the candi-

dates;

• Recruitment Department – at the university, it per-

forms the direct support of candidates, i.e., taking

documents from candidates and issuing documents

to students.

Prior to the recruitment process at each university, an al-

gorithm is determined, according to which the Recruitment

Commission (RC) will conduct the recruitment.

In our further considerations we will confine ourselves to

the model of recruitment activities for undergraduate stud-

ies. With some simplification we can assume that this al-

gorithm is defined as the weighted average of the results

of the candidate’s maturity exam from a set of subjects [i],

taken at a level of [j] where µi, j denotes the weight

number of points =
m,n

∑
i=1, j=1

(µi, j ∗ resulti, j) .

RC determines, on the basis of results introduced by the

candidates, the threshold of eligibility for studying γ[i, j]
(independently for each faculty, (and/or) direction and type

of study) – i.e., the minimum number of points entitling

the candidate for enrollment, and then the list specifying

the place (rank) of each candidate.

The modeling process begins with the creation of require-

ments for a system which for the need of the publication

will be restricted to the presentation of the modeled func-

tionality (Fig. 1).

The domain model, developed on the basis of the require-

ments model, allows the formulation of the rules on the

Fig. 1. Association of the verbal form with the visual form of

the functional requirements.

48



UML Simulation of a Topology Configuration Model

Fig. 2. An example of the domain model.

Fig. 3. The components model for the student registration system.

recruitment process, and it is shown in Fig. 2. However,

not all rules can be described using UML models. For

a more complete formalization of the model, it is neces-

sary to use OCL and UAL languages.

An example of a service resulting from the requirements

of the system is the authorization service. This service

is defined by the LoginSession component (which will

be appealed to all services that require authorized access

to them).

For example, the student registration service (Registra-

tionService component) is related to many of their sessions

(Fig. 3), for each user a separate object session, maintaining

the state only when the user is logged in (Loggedin state

(Fig. 4)).

49



Zbigniew Zieliński, Andrzej Stasiak, and Włodzimierz Dąbrowski

Fig. 4. Signaling the history of states (and transitions).

After changing the state forced by the sessionCompleted

operation, the object session is destroyed, and the service

goes into the WaitForLogin state.

An important part of the planned condition model simu-

lation process is determination of the list of messages in-

troduced into the console, which will be implemented in

UAL. The code corresponding to the handling of subse-

quent messages is as follows:

• System.out.println(“Create new user and yours pass-

word”);

• System.out.println(“LogIn with userId =” + msg.UserID

+ “and password =” + msg.Password);

• System.out.println(“User:” + msg.UserID + “session

is completed”).

Fig. 5. The result of the machine state service animation –

registration of students.

After taking into account the principles of building simula-

tion models [2], [3], it is possible to obtain the signaling of

history of states and transitions between them in the sim-

ulated model. An exemplary signaling of state history is

shown in Fig. 4.

After changing the state forced by the sessionCompleted

operation, the object session is destroyed, and the service

goes into the WaitForLogin state.

Similar model test coverage can be observed by analyz-

ing Fig. 5.

Fig. 6. A fragment of the use case model.

The service of registering candidates is an important func-

tionality of the system being built (Fig. 6) and initiates

the recruitment process, which is why the following part

50



UML Simulation of a Topology Configuration Model

Fig. 7. The deployment diagram for the student registrations service.

Fig. 8. The result of the state machine animation of the student registration service.

of this article will be limited to the presentation of its

detail.

For the selected set of use cases (in the service of regis-

tering candidates) the deployment diagram was proposed

(Fig. 7), which next has been transformed to the more de-

tailed form of topology model.

It would be noticed that using UML language for deploy-

ment specification (Fig. 7) is not necessary, because a topol-

ogy model extends a set of information concerning a system

implementation as nodes, components, etc., and additional

properties defining its location as hardware and software

platforms.

Simulation model of the topology for the discussed frag-

ment of the system, i.e., the candidate registration service

is shown in the diagram (Fig. 8).

This model is a component of the system (Fig. 3) run-

ning on the nodes placed in specific (named) locations in

the structure of the educational institution and relationships

between them that define the flow path of messages.

The flows of messages are shown directly on the topology

model in the form of numbered arrows.

It is worth noting here that during the process of anima-

tion, only those components of the system model from

Fig. 3 participate, which are directly involved in the sce-

51



Zbigniew Zieliński, Andrzej Stasiak, and Włodzimierz Dąbrowski

Fig. 9. Registration Service Interaction.

nario depicted in Fig. 9 (others are used in other sce-

narios).

The results show that the essential parameter of the pro-

cess simulation is the behavioral diagram, which is to be

animated. The animation can comprise not only on the pre-

sentation of the paths of starting the model (by indicating

the place of the token, anticipating the next place, and high-

lighting the paths with a color, in which the token already

was in), but we can also animate the messages flowing in

from an established source to target.

7. Conclusion

This paper presents the essential capabilities of the simu-

lation process of UML models, which affect the animation

capabilities of topological models.

It is worth noting here that UML models significantly re-

duce the complexity of the topology modeling process, al-

lowing to automatically identify links between elements

of the topology model based on relationships defined in

behavioral models, and the structure of the built system

(relationships in the topology model from Fig. 7 were

automatically created after assigning components to nodes

from Fig. 3) working in their environment of which behav-

ior is defined in Fig. 8. We can say that the relations in

UML models provide guidance to their mappings (via the

drag-and-drop method) on topology models.

Nowadays, the modern CASE tools (including Rational

Software Architect used in this article) allow to change

the elaborate approach to a transformational approach (ac-

cording to the MDA concept), automating the software de-

velopment processes that nevertheless requires the use of

language semantics of actions to build executable UML

models, which may provide an effective basis for building

models of system implementation.

References

[1] W. Dąbrowski, A. Stasiak, and M. Wolski, Modelowanie systemów

informatycznych w języku UML 2.1. Warszawa: PWN, 2007 (in

Polish).

[2] M. Mohlin, “Model Simulation in Rational Software Architect: Sim-

ulating UML Models”, IBM, 2010.

[3] M. Mohlin, “Model Simulation in Rational Software Architect:

Communicating Models”, IBM, 2010.

[4] E. Anders, “Model Simulation in Rational Software Architect: Ac-

tivity Simulation”, IBM, 2010.

52



UML Simulation of a Topology Configuration Model

[5] “OMG, Action Language for Foundational UML (Alf)” [Online].

Available: http://www.omg.org/spec/ALF/1.0

[6] Z. Zieliński, A. Stasiak, and W. Dąbrowski, “Zastosowanie metod

symulacji modeli UML do analizy i projektowanie komputerowych

systemów specjalizowanych przetwarzających danych z ochroną

wielopoziomową”, Przegląd Elektrotechniczny, no. 2, pp. 120–125,

2012 (in Polish).

[7] “Planning deployment with the topology editor”, IBM Tutorial,

2008.

[8] “Modeling deployment topologies”, IBM Tutorial, 2008.

[9] S. Willard, General topology. Mineola, N.Y.: Dover Publications,

2004.

[10] M. Narinder, “Anatomy of a topology model used in IBM Rational

Software Architect Version 7.5, Part 2: Advanced concepts”, IBM,

2008

[11] M. Narinder, “Anatomy of a topology model in Rational Software

Architect Version 7.5: Part 1: Deployment modeling”, IBM, 2008.

[12] W. Dąbrowski, A. Stasiak, and K. Markowski, “Modelowanie sys-

temów IT z wykorzystaniem topologii konfiguracji”, Przegląd Elek-

trotechniczny, no. 9, pp. 239–242, 2010 (in Polish).

Zbigniew Zieliński received

the M.Sc. in Computer Sciences

from the Cybernetics Faculty of

Military University of Technol-

ogy, Warsaw, Poland in 1978,

and the Ph.D. degree in Com-

puter Systems in 1988. He is

currently an Assistant Profes-

sor of Computer Systems in

the Institute of Teleinformatics

and Automation of Cybernetics

Faculty, Military University of Technology. His current

research interests are in the areas of computer systems

dependability, processors network diagnosis methods,

fault-tolerant systems, as well as virtualization and system

security.

E-mail: zzielinski@wat.edu.pl

Faculty of Cybernetics

Military University of Technology

Gen. S. Kaliskiego st 2

00-908 Warsaw, Poland

Andrzej Stasiak is an expert

in the field of design of in-

formation systems. From years

he is a member of program

committees of conferences on

Software Engineering and Real

Time Systems. From 1987 is

an Assistant Professor of Com-

puter Systems in the Institute

of Teleinformatics and Automa-

tion of Cybernetics Faculty,

Military University of Technology. He gained his profes-

sional experience directing some complex IT projects.

E-mail: astasiak@wat.edu.pl

Faculty of Cybernetics

Military University of Technology

Gen. S. Kaliskiego st 2

00-908 Warsaw, Poland

Włodzimierz Dąbrowski re-

ceived the M.Sc. in Electrical

Engineering from the Warsaw

University of Technology, War-

saw, Poland in 1992, and the

Ph.D. degree in Control Sys-

tems Theory from the War-

saw University of Technology

in 1999. He is currently an As-

sistant Professor in the Institute

of Control and Industrial Elec-

tronics, Faculty of Electrical Engineering, Warsaw Univer-

sity of Technology. From 2000 he is Assistant Professor

in Polish-Japanese Institute of Informatics, Software Engi-

neering Department, Warsaw. His current research interests

are in the areas of design methods for computer systems,

software engineering, and software project management.

E-mail: w.dabrowski@ee.pw.edu.pl

Faculty of Electrical Engineering

Warsaw University of Technology

Koszykowa st 75

00-662 Warsaw, Poland

53


