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Abstract—This paper describes an application of the Zak-

Gabor-based iris coding to build a secure biometric verifi-

cation station (SBS), consisting of a professional iris capture

camera, a processing unit with specially designed iris recogni-

tion and communication software, as well as a display (LCD).

Specially designed protocol controls the access to the station

and secures the communication between the station and the

external world. Reliability of the Zak-Gabor-based coding,

similarly to other wavelet-based methods, strongly depends

on appropriate choice of the wavelets employed in image cod-

ing. This choice cannot be arbitrary and should be adequate

to the employed iris image quality. Thus in this paper we

propose an automatic iris feature selection mechanism em-

ploying, among others, the minimum redundancy, maximum

relevance (mRMR) methodology as one, yet important, step to

assess the optimal set of wavelets used in this iris recognition

application. System reliability is assessed with approximately

1000 iris images collected by the station for 50 different eyes.

Keywords—application of biometrics, feature selection, iris

recognition, Zak-Gabor-based iris coding.

1. Introduction

Iris recognition has recently emerged as one of the top

biometric authentication methods due to its accuracy and

outstanding identification efficacy. It is also commonly be-

lieved that the pattern of iris tissue is highly stable through-

out the human live, although recent scientific notifica-

tions start to surprisingly suggest the opposite hypothesis.

However, without a doubt, iris recognition became a ma-

ture technology supported by numerous implementations in

places requiring reliable identity verification, and the most

common applications concern border and physical control.

This paper is conformable with this trend, as we apply the

iris recognition as a key element of a secure verification

station, being a server of biometric-based verification. The

station is autonomous, i.e., it consists of image capture

hardware, the processing unit with the operating system

and the display for communication with verified subjects.

The electronic communication with the station is secured

by a protocol specially designed to the purpose of this ap-

plication.

The iris recognition used in this work is based on origi-

nal methodology employing Zak-Gabor transformation [1].

The optimal features selection procedure consists of two

stages: selecting the best iris features – in terms of an

iris recognition efficiency – in the first stage, and select-

ing the optimal Zak-Gabor-based coding parameters based

on the results of the first stage [2]. For reading fluency,

the applied Zak-Gabor-based coding is briefly explained in

Section 2, some remarks related to the iris template cre-

ation and matching are provided in Subsection 2.4, and an

in-depth explanation of the feature selection mechanism is

presented in Section 3.

Selection of coding parameters, i.e., the optimal wavelet

families emphasizing the relevant individual iris features, is

strictly dependent on the database, in particular on the qual-

ity of iris images used. The resulting parameters estimate

an optimal, yet unknown, configuration of wavelet trans-

formation adequate in the iris template creation. However,

when applied to other image sets (not used at the estima-

tion stage), these transformation parameters typically result

in a lower accuracy than expected (in particular the gen-

uine comparison results deteriorate, e.g., see p. 289 in [3]).

It is thus reasonable to adapt – if possible – the coding

parameters to the expected iris image quality by estimat-

ing the optimal features using the database collected in the

assumed scenario, i.e., employing target equipment oper-

ated in a target (or precisely modeled) environment, and

applying all possible procedures that are expected at the

operational stage.

However, feature selection is a very demanding process,

especially when rich datasets are to be applied and the

feature space is significantly large. Therefore, achieving

a global minimum of the recognition error cannot be often

guaranteed within acceptable time (or cannot be achieved

at all due to a huge number of calculations that make the

search process infeasible), and we have to be satisfied by

quasi-optimal solutions. Repeating this process prior to

any application of our recognition methodology may be

thus annoying. To make the iris feature selection an easy

process, and further to select satisfying parameters of the

Zak-Gabor-based coding, we have built a tool that performs

this task automatically for provided dataset of iris images,

Section 4.

To build a secure verification station we decided to use

one of the existing iris capture cameras and our choice was

mainly motivated by speed of capture and ease of use, due

to high priority of practical aspects of the station. As we

expected differences in quality of images captured by the
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station and images used to build the original method, we

finally applied the developed feature selection tool to adapt

the coding and improve the accuracy. The achieved three-

fold reduction of the EER justifies the need of adaptation

for a new image quality. The station development is de-

scribed in Section 5.

2. Zak-Gabor-Based Iris Recognition

This section briefly presents the Zak-Gabor-based iris cod-

ing [1], [2], developed earlier by the first author, and used

in this work to build a tool for automatic iris features se-

lection, which finally is applied in the developed secure

station.

2.1. Iris Images and their Segmentation

Iris recognition starts from the acquisition of an iris im-

age of sufficient quality. The raw image contains the iris

but also its surroundings, and the iris is often disturbed

by occlusions, thus it has to be processed prior to feature

extraction, Fig. 1. Building a map classifying the image

points into those representing the iris and lying outside

the iris is called the segmentation. Although the feature

extraction routines are directly responsible for delivering

iris features, the segmentation process mostly influences

a reliability of iris recognition, and most of current en-

deavors go towards development of robust iris segmentation

methods.

Fig. 1. Iris image captured by the station and the segmentation

result. The two circles approximate inner and outer boundaries

of the iris. Small empty circles point to the detected occlusions,

and the broken line approximates them between detection points.

Two sectors, automatically selected by the segmentation proce-

dure, cover the iris portion used in feature extraction.

The segmentation method used in this work comprises of

two main stages: localization of the inner and outer bound-

aries of the iris, and localization of any disruptions occlud-

ing the iris tissue. Neither the iris nor the pupil are circles,

nevertheless, due to the simplicity and speed of algorithm

implementations, it is a common practice to model the iris

boundaries by circular, non-concentric shapes. The method

applied in this paper employs a modified Hough transform

to detect circular shapes, and the coarse-to-fine analysis is

applied to speed up the calculations, i.e., rough positions

of the pupil and the iris are first determined in a low reso-

lution, and higher resolutions are used to precise the final

result.

Two determined circles representing inner and outer bound-

aries only roughly approximate the actual iris region, due

to occlusions that typically exist in iris images. To detect

local non-uniformity within the iris body, a set of angular

directions is constructed, originating from the iris center

in which the iris texture is analyzed. Among all the angu-

lar directions, a set of reference directions are singled out,

which cover those sections that are known to be always

free of occlusions, and they are used for calculation of the

maximum allowed non-uniformity. Once the maximum al-

lowed non-uniformity is set, the iris region is analyzed for

each analysis direction and an occlusion is detected when

the irregularity in a given direction exceeds the reference.

This procedure constructs an occlusion map as a series of

radii, each representing the distance between the iris center

and the boundary of the occlusion (cf. small empty circles

in Fig. 1).

Based on localized occlusions, the method sets two inde-

pendent iris sectors, each of 90◦ in angular width, to be

further used for features extraction. The choice of angular

width was made at the stage of development of the Zak-

Gabor-based method, and it was based on experiments with

the iris enrollment images. Since users of the secure station

are not forced to open their eyes in a particular way dur-

ing capture, it is concluded that once the eyelid coverage

is too high, the system may ask for the eye to be opened

more widely to finally extract two such sectors with mini-

mum effort by the user. As ISO recommends [4] to have

at least 70% of iris body not obscured, the assumption that

two iris sectors – constituting only 50% of the iris body –

free from occlusions can be found, seems not to be very

demanding.

Iris texture analysis may be qualified as a 2D pattern anal-

ysis task, yet it is often simplified to a set of 1D prob-

lems. The Zak-Gabor-based method maps two iris sec-

tors into R one-dimensional P point functions. We fur-

ther call these functions stripes, as they represent image

intensity distributed along angular direction, and for each

angle the resulting value is calculated within small radial

neighborhood, resembling the division of each iris sector

into R/2 stripes. These one-dimensional functions are fur-

ther used in the Zak-Gabor-based method to extract iris

features.

In order to ascertain whether the acquired image is of the

required quality (in terms of focus and iris body availabil-

ity), the Zak-Gabor-based method investigates two addi-

tional image attributes: focus factor and the iris body cov-

erage by eyelids. These attributes are basis for separate

‘experts’ judging on the image quality, and giving a binary

decision whether the image passed the test. It is assumed
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that image quality (from the iris recognition perspective)

is sufficient if both experts’ answer is affirmative.

2.2. Zak-Gabor-Based Iris Features

The Zak-Gabor-based method characterizes a discrete-time

signal in the joint time-frequency domain, describing its

stationary energy distribution locally, thus finding the dis-

tribution of signal energy in local (possibly overlapping)

time segments. As we deal with images, not time series,

the ‘time’ variable is replaced by the ‘position’ variable in

this work. The Zak-Gabor-based method performs this lo-

cal analysis by a family of wavelets, each characterized

by a quadruple: scale, frequency and radial/angular po-

sitions. Since it is difficult and not recommended to set

an arbitrary scales, the natural extension of such position-

frequency analysis is to allow the scale and to be adapted

independently of the frequency coordinate. Thus direct-

ing these calculations toward the so called wavelet packet

analysis. Following [2], we explain briefly the calculation

principles of the Zak-Gabor coefficients, being a base for

iris features used in this work.

Let gs be a one-dimensional Gaussian function character-

ized by scale index s, sampled at points 0 . . .P−1, namely

gs(p) = e
−π

(

(p+ 1
2
)/2s

)2

(1)

where s = 2, . . . ,S and S = 8, and the factor of 1
2

lets gs to

be symmetric over the sampling grid when P is even. The

Gabor elementary function (GEF) [5] is defined as shifted

and modulated version of gs, namely

gmk;s(p) = gs(p−mK)eikp2π/K, p = 0 . . .P−1 . (2)

Let M be the number of translations of gs, and K be the

number of frequency shifts, where m and k denote posi-

tion and frequency shifts, respectively (m = 0, . . . , M − 1,
k = 0, . . . ,K − 1), and gs is wrapped around the P-point

domain. Zak-Gabor-based iris coding applies critical sam-

pling and always takes M = P/K. Let fℓ be the intensity

function defined on a stripe ℓ. The finite discrete Gabor

transform of fℓ is defined as a set of complex-valued coef-

ficients amk;sℓ that satisfy the Gabor signal expansion rela-

tionship, namely

fℓ(p) =
M−1

∑
m=0

K−1

∑
k=0

amk;sℓgmk;s(p), p = 0 . . .P−1 (3)

and K = 2s is set in further analysis. Note that the number

S of scales together with the stripe size P determine both

M and K.

The set of amk;sℓ coefficients is a base of iris features.

Gaussian-shaped functions, used in the Zak-Gabor trans-

form, are however not orthogonal (the inner product of

any two of all functions is nonzero), therefore its coeffi-

cients cannot be determined in a simple way, and Zak’s

transform is applied for this purpose. The discrete finite

Zak transform Z fℓ(ρ ,φ ;K,M) of a function fℓ sampled

equidistantly at P points is defined as the one-dimensional

discrete Fourier transform of the sequence fℓ(ρ + jK),
j = 0, . . . ,M−1, namely [5]

Z fℓ(ρ ,φ ;K,M) =
M−1

∑
j=0

fℓ(ρ + jK)e−i jφ2π/M (4)

where φ = 0,1, ,M− 1, ρ = 0,1, . . . ,K − 1 and M = P/K.

Application of the discrete Zak transform (4) to both sides

of (3) yields

Z fℓ(ρ ,φ ;K,M) = Fasℓ(ρ ,φ ;K,M)Z gs(ρ ,φ ;K,M) (5)

where Fasℓ[ρ ,φ ;K,M] denotes the discrete 2D Fourier

transform of an array of asℓ, representing the coeffi-

cients determined for the iris stripe ℓ and scale s, and

Z gs[ρ ,φ ;K,M] is the discrete Zak’s transform of the Gaus-

sian window gs. The expansion coefficients amk;sℓ can be

thus recovered from the product form (5) and choosing K

and M to be a power of 2 yields possibility of FFT ap-

plication, thus making computation times proportional to

those in the FFT. As this way of calculating the Gabor

expansion coefficients is often called the Zak-Gabor trans-

form [5] (instead of simply Gabor transform), we further

call amk;sℓ coefficients as the Zak-Gabor coefficients.

Zak-Gabor-based iris coding defines the signs of the real

and imaginary parts of Zak-Gabor coefficients amk;sℓ as iris

feature set B, namely

B =
{

sgn(ℜ(amk;sℓ), sgn(ℑ(amk;sℓ))
}

(6)

where m = 0, . . . ,M − 1, k = 0, . . . ,K − 1, ℓ = 0, . . . ,R− 1

and s = 2, . . . ,S. Since the Fourier transform of real sig-

nals (e.g., iris stripes fℓ are real) consists of two parts being

complex conjugates of each other, for each position m the

coefficients with the frequency index k > K/2 are ignored.

Since M = P/K, for each s there are (N−1)P/2 coefficients

determined. Taking into account that this analysis is carried

out for all iris stripes, and remembering that R = 32,S = 8

and P = 512, the total number of coefficients calculated

for the iris image is R(S−1)P/2 = 57,344. Both real and

imaginary parts are coded separately by one bit, hence

N = #(B) = 114,688 features (bits) are achieved.

2.3. Iris Features Matching

The order of features (bits) is kept identical for all images

and thus the matching requires only a XOR operation be-

tween two feature sets. The Hamming distance is applied

(as it is typically done for binary feature vectors) to calcu-

late the score ξ , namely

ξ =
1

N

N−1

∑
n=0

(b
(1)
n XOR b

(2)
n ) (7)

where b
(i)
n is the n-th bit of i-th sample. Factor 1

N
makes

ξ ∈ 〈0,1〉.
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2.4. Iris Template Creation and Verification

Iris templates used by the Zak-Gabor-based coding con-

sist of iris code bits and positions of the individual sectors

(calculated within the segmentation procedure) for which

the iris features are determined. The sector positions are

necessary to allow calculating the code at the same an-

gular positions each time the images have to be matched.

The implementation of the Zak-Gabor-based which is used

in this work [6] may use any number of iris images (start-

ing from just one) to create the iris template, however, cap-

turing more than one image at the enrollment is recom-

mended. In the latter case we may take advantage of the

Zak-Gabor-based implementation that selects the best iris

code among a number of those calculated for the enroll-

ment images. Namely, if multiple images are available at

the enrollment time, the template creation procedure first

rotates all the images to the one representative which is

the least rotated to all the remaining images. Next, for

all images the iris sectors are determined and their aver-

age positions are taken. The consistency of the codes is

checked by calculating the comparison scores between the

analyzed code and the codes related to the remaining en-

rollment images, obtained for these new (averaged) sector

positions. To finalize the template creation, all the compar-

ison scores must fall below the acceptance threshold, which

denotes that the enrollment images were of sufficient qual-

ity to deliver information about the iris texture. If any of

the matching results exceeds the acceptance threshold, the

procedure allows for a replacement of the defective image

and calculations are partially repeated.

In contrary to the enrollment procedure, the verification

should proceed quickly, in particular only single image is

acquired. However, the absolute eyeball slope cannot be

assessed accurately in one-eye capture system, as it was

applied in the secure station, and no such information is

linked to the template. Once an eye is rotated during cap-

ture relatively to the images employed in the enrollment

process, corresponding features apply to different parts of

the iris, thus making the features inadequate. Using a raw

iris image at the verification stage, without correcting eye

rotation may lead to false rejections. The implementation

of the Zak-Gabor-based coding solves this problem by gen-

erating a series of iris templates at the enrollment stage and

each of the generated template corresponds to one micro-

rotation of the original iris (in both directions). The angles

of these micro-rotations are not equidistantly placed in the

angular axis, and were selected according to the sample

distribution of observed rotations in this application. It

produced a map of rotations, with greater number of el-

ements near zero (small rotations are more probable) and

less elements near the maximum rotations observed (as they

are still probable to occur, yet less than the smallest ones).

It slightly extended the enrollment procedure (as the Zak-

Gabor-based features has to be calculated several times), yet

the eyeball rotation compensation at the verification stage

is done in the blink of the eye, as only a few (instead of

one) XOR operations are needed to conclude the match. In-

troducing this eyeball rotation correction was compulsory,

and neglecting this compensation would lead to significant

and unacceptable false rejections.

3. Iris Features Selection

Not all elements in B are useful for iris recognition, and

only a subset of the features in B constitutes an optimal fea-

ture set B
0. However, simple selection of optimal features

yields to a subset of coefficients indexed by selected scales

and frequencies, but also by selected positions (angular and

radial). There is however no rationale behind selecting only

subsets of positions, as entire areas of both iris sectors are

considered useful in the recognition.

Therefore, a two-stage procedure of Zak-Gabor-based iris

features selection proposed in [2] is used in this work. In

the first stage, the optimal parameter quadruples are se-

lected that yield features maximizing the classification mar-

gin between the same and different irises. This is an ex-

haustive computation problem, yet many feature selection

routines may be applied here (e.g., we may use Fisher’s

information related to each feature to sort them out and

iteratively check the features’ usefulness). In the second

stage, it is checked how the scale-frequency pairs are pop-

ulated by the optimal features (the more a scale-frequency

pair is populated, the more it is significant in iris coding).

The latter stage allows for selecting scales and frequencies

optimal for a given database of iris images, being a good

prediction of optimal scale-frequency pairs in iris recogni-

tion.

Peng et al. [7] proposed to use a mutual information

(i.e., a Kullback-Leibler divergence of a product P(X)P(Y )
of two marginal probability distributions P(X) and P(Y )
from the joint probability distribution P(X ,Y )) to select

best features employed in classification problems. There-

fore, their selection criterion is based on the maximum sta-

tistical dependency between the variables X and Y . Due

to difficulties in direct implementation of the maximum

dependency condition, Peng et al. developed an equiva-

lent form of this criterion, called the minimal-redundancy

maximum-relevance (mRMR). In this paper we are apply-

ing the mRMR search methodology in the first stage to

select the optimal feature set (instead of applying Fisher’s

information, as it was used in [2]). To make this process

an automatic one, and to allow an easy adaptation of Zak-

Gabor-based coding to various iris datasets, the methodol-

ogy was integrated in the form of a convenient tool.

3.1. Estimation Database

Estimating optimal parameters for the Zak-Gabor-based

coding requires suitable data. A database of 1000 iris im-

ages was collected by the station operated in similar en-

vironmental conditions, as the expected in final applica-

tion, guarantying the appropriate quality of images. Twenty

five volunteers, males and females, aged between 20 and
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40 years, participated in the iris images acquisition pro-

cess. The acquisition station was organized in a way that

helped to take advantage of natural lighting to narrow the

pupil. The quality of collected images was manually ana-

lyzed, and images of poor quality, or those generating seg-

mentation failures were removed. Censoring, not carried

out in system evaluation, is necessary when the optimal

coding parameters have to be established. Any failures in

delivering good quality data to the feature selection mech-

anism may have fatal consequences of selecting features

not relevant to given iris tissue. Finally, in this work we

use 946 samples representing 50 different eyes.

3.2. Stage I: Selection of Optimal Features BBB
000

Zak-Gabor-based coding, being a member of wavelet pack-

ets family methods, analyses both the scale and frequency

interdependently, so they should be considered simultane-

ously in feature selection. The optimal selection of features

is complicated, since the most common frequencies that

characterize all iris images cannot be guessed a priori due

to significant and undetermined iris texture variability.

In general, when introducing new elements to the feature

set, one expects the system to behave better in the sense of

unambiguous biometric recognition. To assess the useful-

ness of a given feature (or feature set) we have to calculate,

e.g., equal error rate (or a similar error measure, which

is usually an increasing function of the feature set size),

and compare the result with those obtained for alternative

configuration of features. Single equal error rate may be

obtained for a particular dataset of iris images, given the

actual variant of the coding. This means that every selec-

tion of Zak-Gabor-based features requires recalculating all

genuine and impostor scores. As the last step is extremely

exhaustive, one may find alternative methods of feature use-

fulness assessment.

The mRMR method used in this paper, similarly to the rou-

tine employing Fisher’s information, does not require cal-

culation of the genuine and impostor scores each time we

want to judge about the usefulness of a particular feature.

A reference implementation of mRMR method has been

made public [8], thus its incorporation into our feature se-

lection tool was straightforward and it saved development

time.

All features belonging to the set B were sorted in de-

scending order of their usefulness, expressed as their mu-

tual information, ending up with a set B
sorted. Then each

first N′ features constitute the intermediate iris binary tem-

plate that is used in EER calculation. Note that during the

search procedure required to sort elements of B into B
sorted

we need the genuine and impostor scores only when prob-

ing subsets of the sorted set of features, and not for all

combinations of features.

The EER is one of many possible measures of a biomet-

ric system reliability. EER may be however useless when

it falls to 0, thus we need other measure assessing the

usefulness of a given set of features. For this purpose we

cumulate both sample mean and sample variances of com-

parison scores ξ in the form of the so-called decidability

factor (detectability or d-prime), namely

d′ =
|ξ g − ξ i|

√

1
2

(

ξ g + ξ i

)

(8)

where ξ and ξ denote sample mean and sample variance

of ξ , respectively. The further the mean values are lo-

cated for same variances, the better is the separation of

distributions. Similarly, keeping the same ξ g and ξ i and

simultaneously narrowing ξ g and ξ i one may get higher

level of distinction between genuine and impostor patterns.

Consequently, the value of d′ estimates the degree by which

the distributions of ξg and ξi overlap (the higher d′ is, the

lower is the overlap).

Fig. 2. EER (thick line) and decidability d′ (thin line) vs. the

number of sorted iris features. Best solution (minimizing the

EER), achieved for first 416 features, and the corresponding d′

are marked by circles.

Starting from a small number of best features from B
sorted,

we iteratively add new features (yet keeping the B
sorted

order), each time building a new iris recognition system.

According to observations (Fig. 2), the system reliability

(in terms of the EER and d′) first increases then dete-

riorates once the feature set enlarges, and the minimum

EER = 0.79% for N0 = 416 can be found. Figure 3 depicts

the distribution of genuine and impostor scores achieved

on the estimation database of iris images. The set B
0 of

optimal features is consequently used in the second stage,

namely in the estimation of feature families (and the final

iris coding configuration).

As each coefficient amk;sℓ (and thus each feature in B) is

positioned within the iris sector, we may analyze a popu-

lation of the iris sectors by selected features. Experiments

show that the population of the iris sectors by their fea-

tures is uneven, Fig. 4. Areas located in the middle of iris

sectors are apparently more attractive, while the boundary

parts are almost neglected by the feature selection method-

ology. This behavior related to the angular positions is easy
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Fig. 3. Genuine (solid bars) and impostor (thick line) scores

distribution achieved for a system variant employing 416 opti-

mal features, i.e. the set B
0 (cf. Fig 2). Dashed lines show the

worst scores (minimum impostor and maximum genuine) and the

dotted line points the acceptance threshold value set to calculate

the EER.

Fig. 4. The population of the iris sectors by their features. Values

are averaged for two iris sectors, and lighter color denotes higher

usage of the sector area in the optimal feature set B
0.

to be explained, as Zak-Gabor-based coding treats each iris

stripe as a periodic function (this assumption comes from

the principles of Zak’s transform application). The same

assumption, however, results in incorrect iris features cal-

culated for non-continuity points at zero positions, i.e., fea-

tures with weak abilities in distinguishing between same

and different irises. Hence, the feature selection method-

ology correctly neglects those element of B. However, the

interpretation of the selection of middle elements in radial

direction should refer to the anatomy of the iris, and the

result may prove that the population of individual areas

within the iris is uneven, with more discriminating parts

located closer to the pupil than to the sclera. This inter-

esting observation is worth of making further investigation,

yet larger iris image datasets should be used.

3.3. Stage II: Selection of Optimal Feature Families BBB
∗

The second stage of feature selection, proposed for the Zak-

Gabor-based coding, considers partitions of the set of all

bits B onto feature families Bk,s, namely

Bk,s = {sgn(ℜ(amk;sℓ)),sgn(ℑ(amk;sℓ)) :

m = 0, . . . ,M−1, ℓ = 0, . . . ,R−1} . (9)

A single family collects all bits corresponding to the given

frequency and scale indices, k and s, respectively. This

second stage aims at searching the optimal frequencies

and scales, and the previously determined set B
0 is used

to prioritize pairs (k,s) by their population of features

from B
0.

Following [2], we plot the number of elements in the set

Bk,s∩B
0 separately for real and imaginary parts of the Zak-

Gabor coefficients, Figs. 5 and 6.

Fig. 5. A 2D histogram showing how families Bk,s are ‘popu-

lated’ by optimal features B
0 determined for the imaginary part

of Zak-Gabor coefficients.

Fig. 6. Same as in Fig. 5 except that the real part of Zak-Gabor

coefficients is used.

Note that the number of winning features is not identical

for all families, which means that families differently con-

tribute to the final discrimination capability of the resulting

iris feature set. Thus the last step selecting the final set of

families is required. Selecting the families of features may

be done in various ways, and we use two variants of this

selection. In the first variant we sort the families Bk,s by
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the decreasing number of winning features B
0 included

in a given family, separately for real and imaginary parts

of coefficients. This procedure prioritizes families that are

most ‘populated’ by optimal features, and estimates each

family’s usefulness. Including a new feature family into

the final code results in a new iris recognition system that

Fig. 7. EER (thick line) and decidability d′ (thin line) versus

the number of sorted iris feature families Bk,s. Best solution

minimizing the EER (achieved for the first 8 families) and the

corresponding d′ are marked by circles.

Fig. 8. Same as in Fig. 7 except that only families increasing the

system’s accuracy are iteratively added to the final set.

Fig. 9. Same as in Fig. 3, except that the optimal feature fami-

lies B
∗ are employed.

may be, as in the first stage, assessed by calculating EER

(or additionally d′), Fig. 7. Families characterized by the

minimum EER may be thus chosen and deliver the final

configuration of the Zak-Gabor-based coding in this ap-

plication.

However, one may observe that a few families increase the

EER once they are added to the feature set. Thus the second

variant of feature families selection adds only those Bk,s

which increase system accuracy (i.e., decrease EER),

Fig. 8. This variant results in best EER = 0.98% achieved

for 8 families, constituting a set B
∗ of 576 elements

(i.e., bits of the code). Figure 9 presents the distribution

of genuine and impostor scores obtained for the winning

variant.

4. Implementation of the Automatic Iris

Feature Selection Tool

For the convenience and repeatability of calculations in the

first stage of the iris feature selection, an automatic iris fea-

ture selection tool is introduced. It is a hybrid environment

where Matlab scripts manage executable programs written

in C/C++. This conjunction gives flexibility of script im-

plementation and easiness in replacing any element of the

tool, if needed. All the calculations related to iris image

processing (segmentation, Zak-Gabor-based feature extrac-

tion, iris template creation and matching) is realized by

ACIrisSDK libraries [6], integrated into the tool.

The tool contains two main non-volatile file sets. The first

one is the Iris Data Base (IDB) for which optimal encoding

parameters are calculated. The second one is called Sup-

port Repository (SR) where processed intermediate objects

are stored. IDB has a simple internal structure where im-

ages are located in folders named by user identifier and

an indicator of the left/right iris. Because of the huge

amount of data loaded to the tool, not all operations and

its variables might be stored in the RAM simultaneously.

Each phase of automatic feature selection collects needed

data from the SR, processes it and puts back the results

there.

In the first phase, the proposed tool performs iris segmen-

tation of images stored in the IDB. For each representation,

the implementation of methods described in Subsection 2.1

provides the set of segmentation coordinates: centers of cir-

cles approximating inner and outer boundaries of the iris,

detected occlusions and sectors chosen for features calcu-

lation. The results in a serialized form are placed as files

in the SR.

Images stored within the IDB includes samples that contain

distortions typical for iris image acquisition (e.g., blurred

images, half-closed eye or incorrect cropping). To ensure

the highest quality of the used data, a simple and heuris-

tic algorithm of best samples selection is also build-in in

the proposed tool. Namely, for each iris image two kinds

of biometric templates are calculated: the enrollment tem-

plate and the verification template. These templates are

matched within the iris class. The results are collected
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and these irises which are not matched to some (experi-

mentally determined) number of other are rejected from

further processing. This simple mechanism automatically

finds outliers within a class, i.e., images of significantly

worse quality than the remaining in the class. If necessary,

other poor quality images, not rejected automatically, may

be removed manually.

Third phase concerns calculation of a full Zak-Gabor-based

feature set for each iris that was not rejected during pre-

vious stage. Before that, a very last distortion must be

compensated. When the image of the eye is taken, there is

a possibility of unintentional tilt of the camera or the ob-

ject’s head. The best way of fixing this problem is to shift

the polar iris images in angular direction with a simulta-

neous checking of their correlation. The highest obtained

correlation determines the angle for tilt correction of one

iris in relation to the others. Then the configuration that

minimizes the average tilt correction angle is selected, and

all polar images are modified this way. During the next

step, based on shifted polar images, the full Zak-Gabor-

based feature set B is calculated for each iris and stored in

the SR separately.

The final phase begins with aggregation of calculated fea-

ture sets into one matrix. First row of this matrix contains

feature indices, and the remaining rows are composed with

the iris class index, and values of its Zak-Gabor-based fea-

tures. This matrix is an input for chosen mRMR method

used for feature selection. The output is a set B
sorted of

feature indices sorted by decreasing usefulness.

The proposed feature selection tool was previously used

to estimate Zak-Gabor-based features (and coding parame-

ters) for a few databases, e.g., publicly available Bath Iris

Image Database, and our proprietary databases: BioBase

collected by an IrisCUBE camera [2], and DatastripBase

collected by a Datastrip DSV2+TURBO-SC mobile cam-

era. The estimated time needed for feature selection for

1000 images is approximately 8 hours (assessed when

running on the machine with Intel r©Core i5 processor,

equipped with 4 GB of RAM).

5. Implementation of the Secure

Biometric Verification Station

Secure biometric verification station (SBS) is designed to

be a part of a larger system [9], consisting of one or more

external PC units, which send requests of user’s identity

biometric verification. In the following subsections, we

present the hardware and software components, respec-

tively.

5.1. Hardware Specification

For the purpose of the station development we used a conju-

gation of two ready-to-use devices. The first one, Kontron

Micro Client IIA 70 is a fanless microcomputer equipped

with the Intel r©AtomTMN270 1.6 GHz CPU, 2 GB of RAM

and 8 GB of a Compact Flash memory, a 7.0” TFT LCD

touch screen, USB and LAN 10/100/1000 interfaces and

Kontron customized Windows XP Embedded. This con-

figuration provides a compact and fully functional environ-

ment for Windows based x86 applications.

Fig. 10. Components of the developed station: a processing

unit with a display for communication with a subject and an iris

capture camera.

Second device, Corvus Vista FA2, is a face and iris cap-

ture camera. Connected to the Kontron microcomputer

with USB 2.0 interface guarantees fully automated cap-

turing of iris images compliant with ISO/IEC require-

ments [4] at the resolution of 640×480 pixels. The iris

camera is equipped with multi-wavelength IR illuminants,

a distance-sensed auto focusing system and the LED-based

feedback for captured subjects convenience. Provided SDK

for C/C++ enables also gaining RGB face images (up to

2048×1536 pixels) and setting basic illumination adjust-

ments for both images acquisition modes. Figure 10 shows

hardware components of the station (intentionally presented

without casing).

5.2. Software Functional Requirements and

Implementation

Designing the secure biometric verification station induces

a few security, comfort and simplification aspects to be

considered. In particular they concern:

– secure protocol of communication with an external

unit,

– clear and understandable Graphical User Interface,

– proper iris image acquisition,

– internal data organization system,

– handling of biometric processes.

The implementation of the proposed station functionality

is divided into individual components, Fig. 11. They are

designed as follows:

– SBS – exports three main biometric functions

(SBS Enroll, SBS Verify, SBS Delete) in a form

of Dynamic-Link Library (DLL); SBS integrates also

the remaining components;
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– GUI – handles the Graphical User Interface;

– FILE SYSTEM – contains necessary files (GUI

items, users biometric templates and log files) in

a specially designed folder structure;

– BIOMETRICS – provides biometric operations with

the use of ACIrisSDK libraries, including creating

and matching of user templates stored in the OS file

system;

– CORVUS VISTA FA2 – provides communication

and control over the iris camera used.

Fig. 11. Component diagram of the SBS software modules.

Communication protocol. Cooperation with any other PC

unit (even in the immediate vicinity) requires establishing

a secure communication between these two machines. If

a communication channel is not appropriately protected,

any biometric data transmitted may be stolen or modified.

To prevent the system from abuses, special communication

protocol is developed.

For flexibility in developing of the proposed solution,

a communication layer is separated from the verification

procedure, in particular from handling biometric devices,

controlling acquisition processes and data processing (tem-

plates creation and matching), as well as database and er-

rors logging. To achieve this goal, all non-communication

functionality is supplied in C/C++ Dynamic-Link Library

(DLL) which provides three general functionalities: new

user enrollment, user verification, and deleting users data

from the system.

Graphical User Interface with Qt. Neither enrolling to

the system nor verifying the user is an atomic process. Both

processes consist of several stages where each of them may

take some time and result in an error or warning. There-

fore, for making a proposed solution more user friendly,

we also introduce Graphical User Interface (GUI) imple-

mented in Qt 4.7 technology, and fully compatible with the

provided 7” LCD touch screen of the microcomputer. The

Information about the type of current process, its result and

commands may be displayed in a clear form to the user. In

the presented solution, there is no need for a user to in-

put any information using the screen, mouse or keyboard,

besides presenting the iris after the message. This is due

to controlling current biometric processes by the external

unit.

Iris image acquisition. Prepared solution contains neces-

sary functionality (based on the Corvus Vista FA2 ven-

dor’s SDK) for ensuring proper device initialization, han-

dling of image capture timeouts, illumination adjustments

and terminating of the connection with the camera, after re-

ceiving captured iris images. The procedure of iris capture

is fully automatic. Provided SDK uses build-in distance

sensor for estimating face position in front of the lens, it

controls the NIR illuminants for appropriate scene illumi-

nation and corrects sharpness of the image. The quality of

the iris image is assessed on-line, and when it is acceptable

the capture process terminates, sensor and illuminants are

set off, and the image is available in the indicated memory

buffer.

Users database and log files. In order to be simple, bio-

metric templates, logging results and selected GUI ele-

ments are stored in a local nonvolatile memory. There

is no need for installing detached Database Management

System (DBMS) (like mySQL or Microsoft SQL Server)

as the user database structure is defined by biometric tem-

plates, serialized to binary files placed in the USERS local

folder, and the configuration data is kept within the CONF

local folder. Users can be added and removed only upon

the external unit secured request. The station implements

a simple logging mechanism. The results of component

functions along with threat level (one of six possible), time

stamp (set with thousandth of a second precision), associ-

ated user ID information and a message with a description

are appended to a text file (named by daily date) in the LOG

folder.

Biometric operations. The main software component of

the station is responsible for biometric operations, i.e., en-

rolling new users and verifying them upon the request of the

external unit. The enrollment process starts with checking

of the possibility of adding a new user (specified by UID).

It may not be possible when the maximum number of reg-

istered users has been reached or indicated that the UID

already exists. In the latter case, the request is revoked and

no further action is taken. Otherwise, three enrollment iris

images are captured (each after a specified time interval),

the biometric template is created, and it is placed under

provided UID in the user database. If timeout occurs dur-

ing the acquisition of images, but at least one image was

captured, template can still be created with the obtained

samples. The enrollment process is also revoked when no

image is captured.

At the verification stage, only one image on the eye is

captured, and temporarily created verification template is

matched with the enrollment template stored in the user

database (if UID provided is registered within the database).
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Verification result is displayed on the LCD (’MATCH / NO

MATCH’) and it is sent to the external unit requesting the

verification.

The enrollment process takes typically one minute (includ-

ing capturing of three iris images, template creation and

its storage) and the verification process does not exceed

a second, which very favorably compares to the most of

commercial iris recognition systems.

6. Summary

This paper describes an application of the well-established

Zak-Gabor-based iris coding to build a secure verification

station. To adapt the coding parameters (i.e., iris fea-

ture families, corresponding to frequencies and scales of

wavelets emphasizing individual iris features) we used the

mRMR method using the mutual information as an indi-

cator of the iris feature usefulness. To make the selection

process an automatic one, the iris feature selection tool was

designed and built. A database of iris images collected by

the developed station was used to automatically adapt the

iris coding to the quality of iris images employed. The

feature selection tool allowed for convenient adaptation of

the Zak-Gabor-based method parameters (in a reasonable

time of several hours) and a promising EER = 0.98% was

achieved for iris images collected by the designed verifica-

tion station.
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