
Paper Cryptographic Protection

of Removable Media with a USB

Interface for Secure Workstation

for Special Applications
Jan Chudzikiewicz and Janusz Furtak

Military University of Technology, Warsaw, Poland

Abstract—This paper describes one of the essential elements

of Secure Workstation for Special Applications (SWSA) to

cryptographic protection of removable storage devices with

USB interface. SWSA is a system designed to process data

classified to different security domains in which the multi-

level security is used. The described method for protecting

data on removable Flash RAM protects data against unau-

thorized access in systems processing the data, belonging to

different security domains (with different classification levels)

in which channel the flow of data must be strictly controlled.

Only user authenticated by the SWSA can use the removable

medium in the system, and the data stored on such media

can be read only by an authorized user by the SWSA. This

solution uses both symmetric and asymmetric encryption al-

gorithms. The following procedures are presented: creating

protected a file (encryption), generating signatures for the file

and reading (decryption) the file. Selected elements of the pro-

tection systems implementation of removable Flash RAM and

the mechanisms used in implementation the Windows have

been described.

Keywords—filter driver, removable media protection, symmetric

and asymmetric encryption.

1. Introduction

Nowadays, the most comfortable Removable large-capacity

data devices are connected to the system via the bus Univer-

sal Serial Bus (USB). Such devices include flash memory

RAM with a capacity of several tens of GB and hard disk

drives with a capacity of several TB. The popularity of

these devices forces the need for mechanisms to ensure an

adequate level of protection of data stored on them. This

is important in the case of sensitive data which have a sig-

nificant impact on the safety of the institution. This fact

is particularly important in the systems where confidential

data are processed. It is hard to imagine a contemporary

computer system in which the data storage devices cooper-

ating with the system through the USB bus are not avail-

able. This observation also applies to Secure Workstation

for Special Applications1 (SWSA) [1], [2].

1SWSA is a computer system in which multi-level protection mecha-

nisms have been implemented. In this system, the stored and processed
data (objects) are classified due to the required level of security. Users of

the system (subjects) have specific authorization to work with classified
data. In order to ensure confidentiality and integrity of data for subjects

are used mechanisms of mandatory access control to objects.

In ordinary systems to protect data on the media Flash

RAM, the most commonly used software (e.g., USB Flash

Security, Secure Traveler, Rohos Mini Drive, etc.) must be

installed on the media prior to its use. During the installa-

tion of such software, in Flash RAM is created an encrypted

volume which is accessed by using then defined password.

The power of safeguard of the medium using this type of

software depends on the used symmetric encryption algo-

rithm and key length. This type of security is sufficient

in the case of a loss or theft of the media. The use of

such solutions in systems with multilevel security (MLS)

which include the SWSA is insufficient for the following

reasons:

– system does not provide the possibility of the control

of an access to data copied to such a secured remov-

able media, in particular, an entity with the lower

clause cannot be blocked by system, while trying to

read to the data with a higher classification contained

on the medium;

– transfer of data between different entities that use

such media possesses problems arising mainly from

the need to provide the transfer of the medium and

an encryption key with help which the medium has

been encrypted;

– entity that creates a copy of the data on the media

does not assure that the data are only available for the

appropriate recipient and the recipient does not have

an assurance that data is received from the expected

sender.

The article presents a solution enabling to such a prepa-

ration of data stored in Flash RAM, so that the recording

medium can be used to secure the transfer of data files,

during which the sender of data (i.e., the creator of the pro-

tected media content) is assured that data will be available

only for designated recipient, and the recipient is assured

that the received data comes from the expected sender. The

described mechanism uses both symmetric and asymmet-

ric encryption algorithms and asymmetric. The presented

solution uses a filter driver [3]–[5].

In this solution, it is assumed that in terms of operating

system data can be processed in two directions: from plain

22



Cryptographic Protection of Removable Media with a USB Interface for Secure Workstation for Special Applications

Fig. 1. Schematic diagram of securing data stored on removable media.

text form stored on your hard disk to secure form on re-

movable media (e.g., Flash RAM, hard drive) connected to

the system via the USB bus and, conversely, from secure

form on removable media to plain text form on the hard

drive. Do not allow the possibility of using the software

for the direct exchange of data files between removable

media (e.g., flash memory) connected to the system via

the USB bus.

The process of securing the data exchange using remov-

able media should satisfy the following functional require-

ments:

– it should be implemented in a manner transparent to

the user,

– it should not cause any noticeable loads of the oper-

ating system to the user,

– it should not have a significant impact on the speed

of read and write data onto data media,

– it should allow the use of various encryption algo-

rithms to ensure the required level of confidentiality,

– it should be built on removable media, protected file

and the signature for this file (signature should con-

tain securely stored data necessary to encrypt/decrypt

the protected file, and to ensure the integrity of the

file,

– it should allow to perform any operation allowed for

data storage media, such as volume, surface checking

for errors, and defragment the disk-based data.

These requirements force the use of the process of secur-

ing the data separate modules (drivers), operating at the

kernel-level of operating system [4]–[7]. Schematic repre-

sentation of a solution being developed in the environment

of Windows systems family is shown in Fig. 1.

Described solution is available for a user of the secure work-

station through the control application (CApp). The main

elements of the built system are interacting drivers: encryp-

tion driver [3] and driver supporting, which are compatible

to the Windows Driver Model [6]. Both elements work in

kernel mode, operating system and communicate with each

other using the internal mechanisms of the operating sys-

tem (in the figure they are labeled as IRP) [6], [8]. These

mechanisms are described in details in Section 2.

The purpose of the encryption driver (EnD) is the realiza-

tion of the process of encryption/decryption of data and

determination of its hash value for these data. The driver

supporting (DSu) sets the signature for protected data (ac-

cording to the algorithm presented in Section 3) and medi-

ates the transfer of messages/commands between EnD and

CApp. The other components of the system are: the .DLL

library that provides the functionality of the implemented

encryption algorithms, module of generation of session key,

and the database of public keys of users.

The product of the process securing the original file con-

sists of two files: a file with encrypted data and the file

containing the signature for the encrypted file. Both files

can be stored on one medium or each file on a separate

medium. Choosing a storage location of the signature file

is defined by the user through CApp. It should be noted

that saving the encrypted file and the signature file on sep-

arate media increases the security of stored data, but it is

inconvenient to use.

2. Filter Drivers in Windows

Construction of Class Windows operating system assumes

the use of two modes: user mode and kernel mode [6], [8].

Architecture of such a system is shown in Fig. 1. Modular

design allows for an easy expansion of system functions

(which is clearly visible in Fig. 2, showing the components

operating in kernel mode), while the use of hardware ab-

23



Jan Chudzikiewicz and Janusz Furtak

Fig. 2. Architecture of operating systems Windows [6].

Fig. 3. Process of communication between user application and

the driver [6].

straction layer (HAL) provides portability between different

hardware architectures.

From the point of view the task of securing the content of

removable storage media in the SWSA and the drivers of

these devices (in the part relating to user mode) are relevant

only the following components:

– user application (the CApp in the solution which is

presented in this paper);

– Environment Subsystem (Windows);

– ntdll.dll system library that allows a communication

with the elements working in kernel mode.

Environment subsystems form a working environment for

applications running on them. It translates the application

call to the system and its resources to the primary functions

of Windows. The process of communication between user

application and driver uses packets IRP that are created

Fig. 4. Windows Driver Model [6].

24



Cryptographic Protection of Removable Media with a USB Interface for Secure Workstation for Special Applications

by the I/O Manager on the basis of the generated request

type. The process of handling requests from the user’s ap-

plication in which the IRP packet is generated is shown

in Fig. 3.

The Windows Driver Model assumes that the devices are

controlled by a stack of drivers working together, each of

which is responsible for the implementation of other tasks

of the device. The driver stack model is shown in Fig. 4.

In this model, there are always two drivers: a bus driver at

the bottom of the stack and the functional driver which de-

fines the utility functions of the device. The model allows

for the possibility of using additional filter drivers that are

placed in the stack and allow you to monitor and modify

the contents of packages I/O requests directed to device.

DEVICE OBJECT is a representative of a particular de-

vice, such as flash RAM, and is associated with a driver

(DRIVER OBJECT) that supports it.

Driver objects are created by the I/O Manager when the

driver is loaded. Drivers are responsible for creation of

Fig. 5. Objects stack for the storage device connected to the

system via the USB [3].

Fig. 6. The drivers stack for data storage devices using mecha-

nisms of Filter Manager [4].

the DEVICE OBJECT representing the system devices.

Creating an object of this type occurs when the AddDe-

vice procedure is called by the I/O Manager. Depending

on the role of the driver, created object can represent:

– Physical Device Object (PDO) – representing the

connection between the device and the bus;

– Functional Device Object (FDO) – functional driver

uses it to determine functions of the device;

– Filter Device Object (FiDO) – filter driver uses it

to process data from the packet I/O requests, and

in particular their encryption, which is used in the

described solution.

The I/O Manager can start sending packets I/O requests to

the supported device after all DEVICE OBJECT objects

will be created.

Implementation of the described drivers model for the stor-

age device connected to the system via the USB bus is

more complex. Figure 5 shows objects stack associated with

drivers of such a device. The presented diagram shows

that on the top of the objects stack there is an object of

filters manager. Below are the objects corresponding to

25



Jan Chudzikiewicz and Janusz Furtak

the FAT32 file system (marked on the diagram as an object

of type FS). An attention should be paid to the file system

drivers that are not explicitly included in the driver stack.

The association between driver of file system FS and object

representing a partition in the storage device is executed by

a data structure Volume Parameters Block (VPB).

The presented solution uses a kernel component called the

Filter Manager. Filter Manager performs a significant part

of the tasks. Otherwise it would have to be performed

by the filter drivers. As a result, using the filter manager

(called mini-filters) is simpler and easier to implement. Fil-

ter Manager is available in all systems ranging from Win-

dows Server 2003 to Windows XP with Service Pack 2.

Figure 6 shows the drivers stack for data storage devices

using mechanisms of Filter Manager.

3. The Process of Creating and Reading

a Protected File

In the process of creating a protected file on removable

flash memory (that is a creating an encrypted file and the

signature of this file), and reading (decrypting) the file from

the removable flash memory are the necessary attributes of

the user who created the protected file (this user will be

called the sender), and user for whom the protected file

was created (this user will be called the recipient). When

creating a protected file, sender is role plays a user logged

into the system and he specifies a file recipient using CApp

(you can select one from among the users who meet the

requirements of SWSA closely related to the multilevel se-

curity of system). When reading a protected file with the

use of CApp, the logged user plays the recipient role, and

the sender attributes are read from signature file after the

successful decryption of this file, using the private key of

the logged on user. Permissible is a situation in which the

logged user is simultaneously the sender and the recipient

of data.

The process of creating a protected file includes the step

of encryption, and then creating a signature for that file.

However, during the process of reading a protected file in

a first step, the attributes needed for decrypting this file are

obtained from the signature. In the second step, the file is

decrypted.

3.1. Creating a Protected File

The process of writing the file, including file encryption

and hash generation is performed by the EnD. Operation

of EnD has been presented in [3]. The diagram describing

the process of writing the file is shown in Fig. 7. Dashed

line in that figure indicates operations implemented by the

EnD. During the process of file encryption, the value of

the hash function is determined to ensure the integrity of

the file.

Fig. 7. The process of writing data to removable flash memory.

The determined value of the hash function and the gener-

ated session key after completion of record are transferred

to the DSu in order to generate a signature for the stored

data. The process transferring of the hash function value

and the session key transferring is implemented using the

system mechanisms marked in Fig. 7, as the IRP.

Fig. 8. The algorithm of signature generation for protected file.

26



Cryptographic Protection of Removable Media with a USB Interface for Secure Workstation for Special Applications

3.2. Determining the Signature

For each of the protected file the signature is generated

which contains the information needed to read this file.

Signature of the file contains the following fields:

– SeK – random key to encrypt/decrypt the secure file,

– HASH – value of hash function which is determined

on the basis on the content of protected file after

encrypting this file,

– H ID – identifier of the algorithm used to generate

the hash,

– En ID – identifier of the algorithm used to encrypt-

ing,

– O ID – identifier of the logged user (the sender) who

initiated the operation of data write – this identifier is

required to determine the public key of sender when

the file is read,

– TMS – time stamp of file creation – this value cor-

responds to the date of file creation.

Fig. 9. The structure of signature secure file.

The process of signature creation proceeds according to the

diagram shown in Fig. 8, and the structure of signature is

shown in Fig. 9.

3.3. Reading a Protected File

The process of reading of the file requires that the signa-

ture to be read before and then decrypted. These activities

are performed by the logged user (recipient of file) using

CApp. The process starts with decrypting the signature file

using the private key of the logged user, then reading time

stamp and user identifier (O ID) which assumed the role the

sender creating a protected file. The time stamp protects

the encrypted file before moving it to another medium that

it was originally written on. Incompatibility of date and

time stored in the time stamp and date and time, when the

file was created, causes displaying the message and termi-

nating the procedure of file reading. Along compatibility

of the parameters, the next part of the signature is decrypt-

ing using the user public key of which identifier (O ID) has

been read. The next steps of file decoding are schematically

shown in Fig. 10.

In Fig. 10, the operations performed by the EnD are

marked using thick dashed line, and the operations per-

Fig. 10. The process of data reading from an external file.

formed by the DSu are marked using the thinner line (two

dots dash).

During the data reading, the value of hash function

(HASH de) is determined. If the value HASH de is

different from the values obtained from the signature

(HASH sig), a message is displayed and the decrypted file,

which was saved on hard disk, is being deleted.

4. Implementation Mechanisms

of Encryption/Decryption

This section presents the implementation of selected ele-

ments of drivers EnD and DSu. In particular, it describes

the pieces of code relating to the registration of the EnD

driver in the driver stack of the file system, and initiate

a logical device by the DSu driver and its associated data

structure that stores the signature components of the pro-

tected file.

4.1. Implementation the Selected Elements

of Encryption driver (EnD)

The driver registration process in the stack of file system

drivers is realized when loading it into the system by the

I/O Manager. The I/O Manager calls the DriverEntry driver

function, which will be the entry point to the driver [6]. In

this function, as the first step shown in Fig. 11, Lookaside

list of type is initialized, in which there are held objects

representing the context of substitution data buffers.

In the next step, the functions made available by the filter

manager are called [4], [6]. First, the driver is registered

in the system by these functions and then filtering process

is launched (Fig. 12). After registering a mini-filter using

FltRegisterFilter function, the filter manager takes over the

management of the filter.

27



Jan Chudzikiewicz and Janusz Furtak

Fig. 11. Initializing a Lookaside list.

Fig. 12. The filter registering and activating filtering process.

From this moment, a mini-filter captures all messages sent

to the functional driver of file system. One of these mes-

sages may be a message about trying to mount a new vol-

ume. Then InstanceSetup function is called. This function

checks whether there is a mounted volume on a storage de-

vice connected via USB and includes the correct file sys-

tem type. If these conditions are met, the volume is con-

nected and its context2 is initialized. Otherwise, to the filter

manager is returned the STATUS FLT DO NOT ATTACH

status code, which block the connection of the mini-filter

to the volume. A piece of code referring to the previous

steps is shown in Fig. 13.

Fig. 13. Verification of volume data.

Initiating the volume context requires allocating the neces-

sary quantity of non-paged memory, which is done by call-

ing the FltAllocateContext function. After the correct mem-

ory allocation, this function returns STATUS SUCCESS.

One should pay attention to the need to verify this value.

2The volume context is defined by the volume status, which is described

in a data structure containing the properties of a volume. In this structure

the basic data about a mounted mass storage device are described.

A piece of code executing this operation is shown in

Fig. 14. If one omits this check, in case of failure of mem-

ory allocation can cause an unstable system.

Fig. 14. Appointment of the volume context.

Fig. 15. Setting the volume sector size.

For correct implementation of the operation encryp-

tion/decryption the data included in the volume context is

necessary. These data can be downloaded each time dur-

ing encryption/decryption from the volume context, but

the storage of this data in the driver structure acceler-

ates the process of encryption/decryption. Therefore, the

recommended solution is a single download of this data

by using function FltGetVolumeProperties, as it is shown

in Fig. 15.

4.2. Implementation the Selected Elements

of Supporting Driver (DSu)

In the structure of DSu driver are used drivers marked as

LEGACY DRIVER that runs in kernel mode. This solution

has been accepted because the driver doesn’t need to create

the device objects dynamically. This driver, due to the need

for communication with other components of the system,

creates one logical device object which is also used to store

base elements of signature. At the moment of loading, the

driver in the system is being called by I/O Manager the

DriverEntry that has a driver function which in the first

step initiates an MajorFunction array. These functions will

be handled by I/O’s request addressed to the driver. A piece

of code which implements an operation of MajorFunction

array initialization is shown in Fig. 16.

Then in the DriverEntry function is being called

IoCreateDevice function which creates a device object in

the non-paged memory area. Device object is not related to

any physical device occurring in system, but is used only

28



Cryptographic Protection of Removable Media with a USB Interface for Secure Workstation for Special Applications

Fig. 16. Initializing the MajorFunction array.

Fig. 17. Initializing the device object.

as an element that stores necessary data to generate the

signature. Figure 17 shows a piece of code responsible for

creating the device object.

Fig. 18. Definition of the extension structure.

IoCreateDevice function call is preceded by a definition

of the internal name (which is functioning on the kernel

mode of system) and the symbolic name used as the refer-

ences to the driver from user mode. Verification of correct-

ness of the device object creation is realized by checking

whether the value of status returned by the IoCreateDevice

function is equal to the value of pointer to the device ob-

ject – pDevObj. Validation of creating a device object is

achieved by checking whether the status value returned by

the function IoCreateDevice is consistent with the value of

a pointer to the device object – pDevObj. If the returned

value of status will be different from STATUS SUCCESS

the function terminate working and returns the error code

of input/output to the parent function. After successful cre-

ation of the device object, the function returns the handle

to it, which will be then used to realize the later refer-

ences to this device. Then the initialization process of the

extension structure is realized which definition is shown

in Fig. 18.

A communication between the encryption driver (EnD)

and the driver supporting (DSu) is always initiated by

the EnD driver. The type of request directed to the driver

supporting depends on the direction of copying data,

which is initiated by the currently logged user on the

system.

4.3. Handling for Creating and Reading a Secure File

Logged user (file sender) configures the parameters of

the process of creating and reading a protected file using

CApp which window is shown in Figs. 19 and 20, respec-

tively.

Fig. 19. The window of control application CApp for write data.

First of all, the process of creating protected file requires

connection one or two (depending on where the file with

the signature will be stored) removable Flash RAM memo-

ries to a computer through USB interface. The devices are

automatically detected by EnD which transmits information

about them via the DSu to CApp.

The logged user should determine the parameters required

for encrypting the file and generating a signature. He does

this by selecting (see the Fig. 19):

29



Jan Chudzikiewicz and Janusz Furtak

Fig. 20. The window of control application CApp for read data.

– drive in which the protected file will be stored (“Data

Drive” field),

– drive and path to the directory in which the file with

the signature will be stored (“Signature Drive” field),

– identifier for the algorithm used to encrypt (“The en-

cryption algorithm” field),

– identifier for the algorithm used to generate hash

value for the protected file (“The Hash function al-

gorithm” field),

– identifier for user (receiver) encrypted data (“Data

Recipient” field),

– location of public key data recipient file (“Location

of Public Key” field).

Identifier (O ID) and the private key of the sender (the

elements required to generate the signature) are automati-

cally retrieved from the system. After determining the data

configuration, logged user can begin the process of copy-

ing the file using, e.g., Windows Explorer. The name of

a file which stores the signature will be concatenation of

the name of protected file and string “SIG”. The process of

creating a file with the signature is started after the encryp-

tion process is finished and, just as the encryption process,

it is invisible to the user. When the next file for the same

recipient is being encrypted it does not need to change

the configuration data unless the other parameters (that is

the identifier of encryption algorithm or identifier of algo-

rithm generating of hash value) will be changed. Always

for the next file, a new session key will be automatically

generated.

The process of reading protected file requires a connection

to a computer through USB interface one or two (depending

on where is stored the file with the signature) removable

Flash RAM memories. The devices are automatically de-

tected by EnD which transmit information about them via

the DSu to CApp. The logged user (recipient of the data)

has to specify the drive using CApp on which encrypted

file is stored and indicate the file with the signature cor-

responding to the encrypted file. He accomplishes this by

selecting (see the Fig. 20):

– drive on which is stored the protected file (“Data

Drive” field),

– drive and path to the directory on which is stored the

file with the signature (“Signature Drive” field).

Other parameters required to decrypt the file are determined

based on the signature. After initializing by the logged

user, the process of copying a file EnD sends to the DSu

the name of the copied file and pauses the copy process to

the moment when are receives data required to decrypt the

file (that is the identifier of encryption algorithm, session

key and identifier of algorithm generating of hash value).

Based on submitted by the EnD the name of encrypted file,

DSu identifies a file containing the signature and performs

the process of signature decryption and reading the configu-

ration data. Then performs the verification process read out

TMS with the date and time of the creation of an encrypted

file. In the case of inequality of these values, message is

displayed and the file reading process is interrupted. In the

case of equality of those values, other configuration data

read from the signature are passed to EnD, which resumes

the process of decryption. During the process of decrypting

the file, the EnD determines the value of a hash function

for that file. After completion of the copying process, EnD

transmit to DSu determined value of the hash function for

verification. If the designated hash value is not equal to

the value read from the signature, a message is displayed

and the DSu deletes the file.

5. Conclusion

The SWSA uses proprietary solution for securing data on

removable Flash RAM. There have not been applied widely

available tools to secure the contents of this type of remov-

able storage media due to the fact that these solutions typi-

cally uses only symmetric encryption when writing files. In

these solutions, the key needed for encryption/decryption is

specified by the user who creates a protected file and it is

assumed that this key is known to the user when a protected

file is read. The problems associated with the transmission

of the key between the users are not taken into account.

Such a solution in the SWSA was not useful.

The solution presented in this paper is an unique and more

complicated one. The problem with the transmission of the

key does not apply users of SWSA, because they are using

the advantages of asymmetric encryption which gives as-

surance secured transfer of encryption key between parties,

involved in the exchange of data. In addition, the SWSA

uses Trusted Platform Module which supports the creation

and management of cryptographic keys.

The developed system requires the user who creates a pro-

tected file, to specify only the recipient’s file and the file

encryption parameters. The recipient of the file can only

30



Cryptographic Protection of Removable Media with a USB Interface for Secure Workstation for Special Applications

be the user authorized by the SWSA. The process of pro-

tecting file is closely linked with the mechanisms of sys-

temic support for removable media Flash RAM, and is

transparent to the user. When the protected file is read,

user is not burdened with any additional activities. In ad-

dition, protections are constructed in such a way that the

reading of a file is possible only by the authorized user

by the SWSA, and only with the medium on which the

file was originally saved. An attempt to copy the pro-

tected file to a different medium locks the ability to read

the file.

The described method for protecting data on removable

Flash RAM protects data against unauthorized access in

systems processing the data, belonging to different secu-

rity domains (with different classification levels) in which

channel the flow of data must be strictly controlled.

The described solution protects data stored on removable

Flash RAM in case of loss or theft of the medium, but

also makes it possible to secure transfer of that data

through an unsecured transmission channel, for example

using a courier.

Acknowledgements

This work was supported by The National Center for Re-

search and Development, Project OR00014011.

References

[1] A. Kozakiewicz, A. Felkner, J. Furtak, Z. Zieliński, M. Brudka,

and M. Małowidzki, “Secure workstation for special applications”,

in Secure and Trust Computing, Data Management, and Applications,

C. Lee, J.-M. Seigneur, J. J. Park, and R. R. Wagner, Eds., Com-

munications in Computer and Information Science, vol. 187. Berlin:

Springer, 2011, pp. 174–181.

[2] Z. Zieliński et al., “Secured workstation to process the data of different

classification levels”, J. Telecom. Inform. Technol., no. 3, pp. 5–12,

2012.

[3] J. Chudzikiewicz, “Zabezpieczenie danych przechowywanych na

dyskach zewnętrznych”, in Metody wytwarzania i zastosowania sys-

temów czasu rzeczywistego, L. Trybus and S. Samolej, Eds. Warszawa:

Wydawnictwo Komunikacji i Łączności, 2010, pp. 211–221 (in

Polish).

[4] R. Nagar, “Filter Manager”, Microsoft Corporation, Redmond, 2003.

[5] R. Nagar, OSR’s Classic Reprints: Windows NT File System Internals.

Redmond: OSR Press, 2006.

[6] Technical Documentation ”Microsoft Windows Driver Kit (WDK)”,

Microsoft Corporation, Redmond, 2009.

[7] M. E. Russinovich and D. A. Solomon, Microsoftr Windowsr

Internals, Fourth Edition: Microsoft Windows ServerTM 2003, Win-

dows XP, and Windows 2000. Redmond: Microsoft Press, 2005.

[8] W. Oney, Programming the Microsoftr Windowsr Driver Model.

Redmond: Microsoft Press, 2003.

Jan Chudzikiewicz – for biography, see this issue, p. 11.

Janusz Furtak – for biography, see this issue, p. 12.

31


