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Abstract—Marketing campaigns directed to randomly se-

lected customers often generate huge costs and a weak re-

sponse. Moreover, such campaigns tend to unnecessarily an-

noy customers and make them less likely to answer to future

communications. Precise targeting of marketing actions can

potentially results in a greater return on investment. Usually,

response models are used to select good targets. They aim

at achieving high prediction accuracy for the probability of

purchase based on a sample of customers, to whom a pilot

campaign has been sent. However, to separate the impact of

the action from other stimuli and spontaneous purchases we

should model not the response probabilities themselves, but

instead, the change in those probabilities caused by the ac-

tion. The problem of predicting this change is known as uplift

modeling, differential response analysis, or true lift modeling.

In this work, tree-based classifiers designed for uplift mod-

eling are applied to real marketing data and compared with

traditional response models, and other uplift modeling tech-

niques described in literature. The experiments show that

the proposed approaches outperform existing uplift modeling

algorithms and demonstrate significant advantages of uplift

modeling over traditional, response based targeting.

Keywords— decision trees, information theory, marketing tools,

uplift modeling.

1. Introduction

When a customer is not completely anonymous, a com-

pany can send marketing offers directly to him/her. For

example an Internet retailer’s product offer can be sent by

e-mail or by traditional post; telecommunication operators

may advertise their services by SMS, voice calls or other

communication channels.

However, to make campaigns effective they should be di-

rected selectively to those who, with high probability, will

respond positively (will, e.g., buy a product, or visit a web

site). Properly targeted campaign will give a greater return

on investment than a randomly targeted one, and, what is

even more important, it will not annoy those who are not

interested in the offer. It is well known in the direct market-

ing community that campaigns do put off some customers.

There are however few methods available to identify them.

See [1]–[4] for more detailed information.

In this paper we experimentally verify the above claims

on real direct marketing data. The data is publicly avail-

able [5] and comes from an online retailer offering women’s

and men’s merchandise; the next section gives a more de-

tailed description. We test both standard, response based

models, as well as uplift approaches described in literature

and compare them with decision trees designed especially

for uplift modeling, which we introduced in [6], [7]. The

experiments verify that the uplift approach gives much bet-

ter marketing results. Moreover, we demonstrate that our

decision trees, designed especially for uplift modeling, out-

perform other uplift approaches described in literature.

2. Problem Statement

In this section, we describe the marketing data on which

we have tested our models. The dataset [5], provided on

Kevin Hillstrom’s MineThatData blog, contains results of

an e-mail campaign for an Internet based retailer. The

dataset [5] contains information about 64,000 customers

who last purchased within at most twelve months. The

customers were subjected to a test e-mail campaign:

− 1/3 were randomly chosen to receive an e-mail cam-

paign featuring men’s merchandise,

− 1/3 were randomly chosen to receive an e-mail cam-

paign featuring women’s merchandise,

− 1/3 were randomly chosen to not receive an e-mail.

The data describes customer behavior for two weeks after

the campaign. The details of the dataset are summarized

in Tables 1 and 2.

Table 1

Hillstrom’s marketing data: customers’ attributes

Attribute Definition

Recency Months since last purchase

History Segm Categorization of dollars spent in the

past year

History Actual dollar value spent in the past year

Mens 1/0 indicator, 1 = customer purchased

mens merchandise in the past year

Womens 1/0 indicator, 1 = customer purchased

womens merchandise in the past year

Zip Code Classifies zip code as urban, suburban,

or rural

Newbie 1/0 indicator, 1 = new customer in the

past twelve months

Channel Describes the channels the customer

purchased from in the past year
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Table 2

Hillstrom’s marketing data: type of e-mail campaign sent

and activity in the two following weeks

Attribute Definition

Segment E-mail campaign the customer received

Visit 1/0 indicator, 1 = customer visited web-

site in the following two weeks

Conversion 1/0 indicator, 1 = customer purchased

merchandise in the following two weeks

Spend Actual dollars spent in the following two

weeks

The author asked several questions to be answered based

on the data. Here we address the problem of predicting

the people who visited the site within the two-week pe-

riod (attribute Visit in Table 2) because they received the

campaign. The estimate was based by comparing customer

behavior on the treatment and control groups, i.e., compar-

ing customers who did and did not receive an e-mail.

During an initial analysis we have found that about 10.62%

of the people visited the site spontaneously, but after the

campaign (combined men’s and women’s) the visits in-

creased to 16.7%. Men’s merchandise campaign outper-

formed women’s, as the increase in visits was about 7.66%

(from 10.62% to 18.28%), while the women’s merchan-

dise campaign resulted in an increase of only 4.52% (from

10.62% to 15.14%).

Afterward, we used traditional response based targeting, as

well as uplift modeling based targeting to select the cus-

tomers for the campaign. Because there is a large difference

in response between treatment groups who received ad-

vertisements for men’s and women’s merchandise, the two

campaign types were analyzed, both jointly and separately.

In the first case, the treatment group consists of all those

who received an e-mail and the control group of those who

did not. In the second case, there are two treatment groups,

one for man’s and one for women’s merchandise campaign;

both treatment groups are analyzed separately with respect

to the same control group. Since the men’s merchandise

group showed little sensitivity to attribute values, our ex-

periments focused primarily on the women’s merchandise

group.

The following two sections give the literature overview, de-

scribe the uplift modeling methodology used and compare

it to the traditional predictive modeling. Section 5 presents

experimental results.

3. Uplift Modeling

In this section we give a more detailed overview of uplift

modeling and review available literature.

Traditionally used response models are built on a sample of

data about the customers. Each record in the dataset repre-

sents a customer and the attributes describe his/her charac-

teristics. In the propensity models, historical information

about purchases (or other success measures like visits) is

used, while in the response models, all customers have

been subject to a pilot campaign. A distinguished class

attribute informs on whether a customer responded to the

offer or not. Afterward, the data is used to build a model

that predicts conditional probability of response after the

campaign. This model is then applied to the whole cus-

tomer database to select people with high probability of

purchasing the product. The process is illustrated in Fig. 1.

Fig. 1. Response model creation process.

However, in reality, we can divide the customers into four

groups, i.e., those who:

– responded because of the action,

– responded regardless of the action (unnecessary

costs),

– did not respond and the action had no impact (un-

necessary costs),

– did not respond because the action had a negative

impact (e.g. a customer got annoyed by the campaign,

might even have churned).

Propensity models, as well as traditional response models

are not capable of distinguishing those four groups, while

uplift models can do that. This is because traditional mod-

els predict the conditional class probability

P(response|treatment),

while uplift models predict the change in behavior resulting

from the action

P(response|treatment)−P(response|no treatment).

Fig. 2. Uplift model creation process.

To build an uplift model, a random sample (the treatment

dataset) of customers is selected and subjected to the mar-

keting action. Disjoint sample is also selected (the con-

trol dataset), to which the action is not applied, and which

serves as the background against which the results of the

action will be measured. The model is now built for pre-

dicting the difference between class probabilities on the two

sets of data. The process is illustrated in Fig. 2.
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3.1. Literature Overview

The problem of uplift modeling has received little attention

in literature – a surprising fact, if one considers its practical

importance.

There exist two overall approaches to uplift modeling. The

first, obvious one is to build two separate classifiers. One

on the treatment and another on the control dataset (as

shown in Fig. 3). For each classified object class proba-

bilities predicted by the control model are subtracted from

those predicted by the treatment model, giving a direct es-

timate of the difference in behavior caused by the action.

Fig. 3. Uplift model based on two separate classifiers

This approach has a major disadvantage: the behavior of the

differences between class probabilities can be very differ-

ent than the behavior of the class probabilities themselves.

Thus, it is possible that the models will focus too much

on modeling the class in both datasets, instead of focusing

on the differences between them. The problem is exacer-

bated by the fact that the variation in the difference between

class probabilities is usually much smaller than variability

in class probabilities themselves. For example, in case of

decision trees, the double model approach does not nec-

essarily favor splits, which lead to different responses in

treatment and control groups, just splits, which lead to pre-

dictable outcomes in each of the groups separately, wasting

valuable data. See [1], [4], [8], [9] for details.

Let us now look at the second type of approaches, which

attempt to model the difference between treatment and con-

trol probabilities directly.

One of the first ‘native’ uplift modeling approaches builds

a single decision tree, by trying to maximize the uplift cri-

terion at each step [1]. The splitting criterion used by the

algorithm, called ∆∆P, selects tests, which maximize the

difference between the differences between treatment and

control probabilities in the left and right subtrees. This

corresponds to maximizing the desired difference, directly

in the fashion of greedy algorithms. More formally, sup-

pose we have a test A with outcomes a0 and a1. The ∆∆P

splitting criterion is defined as

∆∆P(A) =
∣

∣

(

PT (y0|a0)−PC(y0|a0)
)

−
(

PT (y0|a1)−PC(y0|a1)
)
∣

∣,

where y0 is a selected (positive) class. The calculation of

the criterion for subtree is illustrated in Fig. 4.

While the original ∆∆P criterion works only for binary trees

and two-class problems, we have generalized it in [6], [7]

to multiway splits and multiclass problems to make com-

parisons with other methods easier.

Fig. 4. An example calculation of the ∆∆P criterion

The first paper explicitly discussing uplift modeling was [3].

It presents an extensive motivation including several used

cases. Recently, a detailed description of their decision tree

learning algorithm has been published in [4]. The decision

trees have been adapted to the uplift case by using a split-

ting criterion, based on statistical tests of the differences

between treatment and control probabilities introduced by

the split. There is also a variance based pruning technique.

See [4] for more details.

Other approaches to uplift modeling include modifications

of the naive Bayesian classifier and logistic regression [10],

or different approaches to uplift decision tree learning, see

e.g., [9].

In [6], [7] we have presented another algorithm for learning

uplift decision trees. Our approach follows the more mod-

ern tree learning algorithms which use information theory

for test selection. We describe it in the next section.

4. Information Theory Based Uplift

Decision Trees

In [6], [7] we presented an approach to uplift decision tree

learning more in the spirit of modern learning algorithms

(such as Quinlan’s C4.5 [11]) with tests selected based on

information theoretical measures, and overfitting controlled

by tree pruning. The first paper presented the case where

all customers receive and identical offer, the second ex-

tended the approach to the case when multiple treatments

are possible. In the remaining part of the paper we only

deal with the single treatment case. This section provides

a description of those algorithms, which, while being quite

thorough, leaves out several details. The reader is referred

to [6], [7] for a full description.

4.1. Notation

Let us now introduce the notation used in this section.

Recall that nonleaf nodes in a decision trees are labeled

with tests [11]. We create a single test for each categor-

ical attribute, the outcomes of this test are all attribute’s

values. For each numerical attribute X we create tests of
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the form X < v, where v is a real number. Tests will be

denoted with uppercase letter A and the class attribute with

the letter Y . Values from the domains of attributes and

test outcomes will be denoted by corresponding lowercase

letters, e.g., a will denote an outcome of a test A, and y

a specific class; ∑a denotes the sum over all outcomes of

a test A, and ∑y the sum over all classes.

We need to introduce special notation reflecting the fact,

that, contrary to the standard Machine Learning setting, we

now have two training datasets: treatment and control. The

probabilities estimated from the treatment dataset will be

denoted by PT and those estimated from the control dataset

by PC. We assume that Laplace correction is used while

estimating the probabilities PT and PC.

Additionally, let NT and NC denote the number of records

in the treatment and control samples respectively, and

NT (a) and NC(a), the number of records in which the

outcome of a test A is a. Finally let N = NT + NC and

N(a) = NT (a)+ NC(a).

4.2. Splitting Criteria

One of the most important aspects of a decision tree learn-

ing algorithm is the criterion used to select tests in the

nodes of the tree. In this section we present two uplift spe-

cific splitting criteria. Instead of using the target quantity

directly, we attempt to model the amount of information

that a test gives about the difference between treatment and

control class probabilities. In [6], [7] we stated several pos-

tulates which an uplift splitting criterion should satisfy, and

proved that our criteria do indeed satisfy them.

The splitting criteria we propose are based on distribution

divergences [12]–[15] – information theoretical measures

of differences between distributions. We use two distri-

bution divergence measures, the Kullback-Leibler diver-

gence [12], [14] and the squared Euclidean distance [13].

Those divergences, from a distribution Q = (q1, . . . ,qn) to

a distribution P = (p1, . . . , pn), are defined respectively as

KL(P : Q) = ∑
i

pi log
pi

qi

,

E(P : Q) = ∑
i

(pi −qi)
2
.

Given a divergence measure D, our splitting criterion is

Dgain(A) = D
(

PT (Y ) : PC(Y )|A
)

−D
(

PT (Y ) : PC(Y )
)

,

where A is a test and D
(

PT (Y ) : PC(Y )|A
)

, the condi-

tional divergence defined below. Substituting for D the

KL-divergence and squared Euclidean distance divergence

we obtain our two proposed splitting criteria, the KLgain

and Egain.

To justify the definition, note that we want to build the

tree, in which the distributions in the treatment and control

groups differ as much as possible. The first part of the

expression picks a test, which leads to most divergent class

distributions in each branch; from this value we subtract the

divergence between class distributions on the whole dataset

in order to measure the increase or gain of the divergence

resulting from splitting with test A. This is analogous to

entropy gain [11] and Gini gain [16] used in standard de-

cision trees. In fact, one of our postulates was that, when

the control dataset is missing the splitting criteria should

reduce to entropy and Gini gains respectively [6].

Conditional KL-divergences have been used in litera-

ture [14] but the definition is not directly applicable to our

case, since the probability distributions of the test A differ

in the treatment and control groups. We have thus defined

conditional divergence as:

D(PT (Y ) : PC(Y )|A) = ∑
a

N(a)

N
D

(

PT (Y |a) : PC(Y |a)

)

.

(1)

The relative influence of each test value is proportional to

the total number of training examples falling into its branch

in both treatment and control groups.

4.3. Correcting for Tests with Large Number of Splits

and Imbalanced Treatment and Control Splits

In order to prevent a bias towards tests with high number of

outcomes decision, tree learning algorithms normalize the

information gain dividing it by the information value of the

test itself [11]. In our case the normalization factor is more

complicated, as the information value can be different in the

control and treatment groups. Moreover, it is desirable to

punish tests, which split the control and treatment groups

in different proportions, since such splits indicate that the

test is not independent from the assignment of cases to the

treatment and control groups.

The proposed normalization value for a test A is given by

I(A) = H

(

NT

N
,

NC

N

)

KL(PT (A) : PC(A))

+
NT

N
H(PT (A))+

NC

N
H(PC(A))+

1

2
, (2)

for the KLgain criterion, and

J(A) = Gini

(

NT

N
,

NC

N

)

E(PT (A) : PC(A))

+
NT

N
Gini(PT (A))+

NC

N
Gini(PC(A))+

1

2
,

for the Egain criterion.

The first term is responsible for penalizing uneven splits.

The unevenness of splitting proportions is measured us-

ing the divergence between the distributions of the test

outcomes in the treatment and control datasets. How-

ever, penalizing uneven splits only makes sense if there

is enough data in both treatment and control groups. The

KL(PT (A) : PC(A)) term is thus multiplied by H
(

NT

N
,

NC

N

)

,

which is close to zero when there is a large imbalance be-

tween the number of data in treatment and control groups

(analogous, Gini based measures are used for Egain). The
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following two terms penalize tests with large numbers of

outcomes, just as in classification decision trees [11]. The

final 1
2

term prevents the division by very small normal-

ization factors from inflating the value of the splitting cri-

terion for tests with highly imbalanced outcome probabil-

ities. Notice that when NC = 0 the criterion reduces to

H(PT (A))+ 1
2

which is identical to normalization used in

standard decision tree learning (except for the extra 1
2
). Af-

ter taking the normalization into account, the final splitting

criteria become

KLratio(A)

I(A)
, and

Eratio(A)

J(A)
.

4.4. Application of the Tree

Once the tree has been built, its leaves correspond to sub-

groups of objects, for which the treatment and control class

distributions differ. The question now is how to apply the

tree to make decisions on whether the marketing action

should be applied to customers falling into a given leaf.

To this end, we annotate each leaf with an expected profit,

which can also be used for scoring new customers.

The assignment of profits uses an approach similar

to [1], [9]. Each class y is assigned to profit vy, that is, the

expected income if a given object (whether treated or not)

falls into this class. If each object in a leaf l is targeted, the

expected profit (per object) is equal to −c + ∑y PT (y|l)vy,

where c is the cost of performing the action. If no object

in l is targeted, the expected profit is ∑y PC(y|l)vy. Com-

bining the two, we get the following expected gain from

treating each object falling into l:

−c +∑
y

vy

(

PT (y|l)−PC(y|l)
)

. (3)

4.5. Pruning

Decision tree pruning has decisive influence on the per-

formance of the model. There are several pruning meth-

ods, based on statistical tests, Minimum Description Length

principle, and others [11], [17]–[19].

We chose the simplest, but nevertheless effective pruning

method based on using a separate validation set [17], [18].

For the classification problem, after the full tree has been

built on the training set, the method traverses the tree bot-

tom up and tests, for each node, whether replacing the sub-

tree rooted at that node with a single leaf would improve

accuracy on the validation set. If this is the case, the sub-

tree is replaced, and the process continues.

Applying this method to uplift modeling required an ana-

logue of classification accuracy. To this end we have de-

vised a measure of improvement called the maximum class

probability difference, which can be viewed as a general-

ization of classification accuracy to the uplift case. The

idea is to look at the differences between treatment and

control probabilities in the root of the subtree and in its

leaves, and prune if, overall, the differences in leaves are

not greater than the difference in the root. In each node we

only look at the class, for which the difference was largest

on the training set, and in addition remember the sign of

that difference such that only differences, which have the

same sign in the training and validation sets contribute to

the increase of our criterion.

More formally, while building the tree on the training set,

for each node t, we store the class y∗(t), for which the differ-

ence
∣

∣PT (y∗|t)−PC(y∗|t)
∣

∣ is maximal, and also remember

the sign of this difference s∗(t) = sgn(PT (y∗|t)−PC(y∗|t)).
During the pruning step, suppose we are examining a sub-

tree with root r and leaves l1, . . . , lk. We calculate the fol-

lowing quantities with the stored values of y∗ and s∗, and

all probabilities computed on the validation set:

d1(r) =
k

∑
i=1

N(li)

N(r)
s∗(li)

(

PT (y∗(li)|li)−PC(y∗(li)|li)
)

,

d2(r) = s∗(r)
(

PT (y∗(r)|r)−PC(y∗(r)|r)
)

,

where N(li) is the number of validation examples (both

treatment and control) falling into the leaf li. The first

quantity is the maximum class probability difference of the

unpruned subtree and the second is the maximum class

probability difference we would obtain on the validation

set, if the subtree was pruned and replaced with a single

leaf. The subtree is pruned if d1(r) ≤ d2(r).
The class y∗ is an analogue of the predicted class in stan-

dard classification trees. In [7] we describe the relation

of maximum class probability difference to classification

accuracy.

5. Experimental Evaluation on Direct

Marketing Data

We now present an application of uplift models, as well

as traditional response models to the problem of selection

of customers for an e-mail campaign based on the data de-

scribed in Section 2. The target is to maximize the num-

Table 3

Models used in the experiments

Response models

SingleTree.E Decision tree model based on the Eratio

criterion

SingleTree.KL Decision tree model based on the
KLratio criterion

SingleTree.J48 Decision tree model based on J48
Weka implementation

Uplift models

UpliftTree.E Uplift decision tree based on the Eratio

criterion

UpliftTree.KL Uplift decision tree based on the
KLratio criterion

DoubleTree.J48 Separate decision trees for the treat-
ment and control groups (J48 Weka im-

plementation)
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ber of visits to the web site that were driven by the cam-

paign.

We compared six different models, three response models

and three uplift models (Table 3).

The models were evaluated using 10× 10 crossvalidation,

all figures present results obtained on the test folds.

We begin by building models with both types of campaign

e-mails treated jointly. The results for traditional response

models are presented in Fig. 5. The figure shows cumula-

tive percent of total page visits for customers sorted from

the highest to the lowest score. The area under the curve

for each model is included in the legend. The given value

is the actual area under the curve, from which the area

under the diagonal line corresponding to random selection

is subtracted. The greater the area, the better. We can see

that all traditional response models perform much better at

predicting who will visit the site than random selection.

Fig. 5. Cumulative visits ( lift) predicted by classification models

built just on the treatment dataset.

Fig. 6. Cumulative incremental visits ( uplift) predicted by clas-

sification models built just on the treatment dataset.

Traditional models predict all possible visits, so they indi-

cate as positive customers visit the site spontaneously, as

well as those who visit as a result of the campaign. How-

ever, those models are not successful in predicting new

visits. To indicate this, Fig. 6 shows the cumulative percent-

age (of the total population) of the new visits. The curve is

obtained by subtracting two gain curves (such as those used

in Fig. 5): the one obtained on the control dataset from the

one obtained on the treatment dataset. Areas under those

curves are also indicated. Fig. 7 includes the same results

for dedicated uplift models.

Fig. 7. Cumulative incremental visits ( uplift) predicted by uplift

models built on treatment and control datasets.

Results presented in Fig. 6 and Fig. 7 show that tradi-

tional response models are very poor in predicting uplift,

i.e., which customers are likely to visit the site because of

the campaign (areas under their uplift curves are practically

equal to random selection), even though they are highly

effective in predicting who will visit the site, i.e., com-

bined spontaneous and campaign induced visits. This is

not what a marketer is looking for, because targeting cus-

tomers, which have high response scores does not generate

a tangible increase in the number of visits.

In contrast, uplift models perform much better at predicting

new visits. This is especially true for the model based on

the Eratio criterion, which very significantly outperformed

all response based models. The KLratio based model per-

formed much worse than the Eratio based, but still outper-

forms traditional response models. The approach based on

two separate models also performed poorly, confirming the

superiority of dedicated uplift approaches.

Below, we show two top levels of an uplift decision tree

for combined men’s and women’s merchandise campaigns

(UpliftTree.E built on one of the crossvalidation folds). The

womens attribute gives the most information about the in-

crease in visits, and is placed in the root of the tree. It splits

the data more or less in half. In a subgroup of 55.3% of

the customers (womens = 1) we reached an uplift of 7.9%

and in 45% of this subgroup (zip code = Suburban) an up-

lift of 8.4%. This is much more than the average uplift of

6.1%. In a small group (womens = 0, history ≥ 1621.49)

the uplift is negative (−17.3%); the campaign had a nega-
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tive effect on this group (note that these are highly valuable

customers who made large purchases before).

UpliftTree.E (Combined campaigns):

Total uplift = 6.1%

− [44.7%] womens = 0: upli f t = 3.8%

– [0.1%] history ≥ 1621.49: upli f t = −17.3%

– [99.9%] history < 1621.49: upli f t = 3.9%

− [55.3%] womens = 1: upli f t = 7.9%

– [14.8%] zip code = Rural: upli f t = 5.9%

– [45.0%] zip code = Suburban: upli f t = 8.4%

– [40.2%] zip code = Urban: upli f t = 8.1%

Next, new models were built on women’s and men’s mer-

chandise campaign data separately. As the results for the

men’s merchandise campaign showed little dependence on

customers’ attributes, we show only the results for the

women’s merchandise campaign. The results are presented

in Figs. 8, 9 and 10). The advantage of uplift models is

much more pronounced than in the case of both campaigns

treated jointly. The KLratio based model worked very well

in this case, its performance was practically identical to

that of the Eratio based model, and much better than the

performance of the model based on two separate decision

trees. It is enough to target just about half of the customers

to achieve results almost identical to targeting the whole

database.

Fig. 8. Cumulative visits (lift) after the women’s merchandise

campaign predicted by classification models built just on the treat-

ment dataset.

We now look at the top two levels of an uplift tree model

build on the data from women’s merchandise campaign.

We can see that also for this group the women’s attribute

is very important. In a group of 55.3% of the customers

(womens = 1) the uplift is 7.3%. It means that by di-

recting the campaign to this group we can encourage

55.3% × 7.3% = 4.04% of the total population to visit

our site.

Fig. 9. Cumulative incremental visits (uplift) after women’s cam-

paign predicted by classification models built just on the treatment

dataset.

Fig. 10. Cumulative incremental visits (uplift) after women’s

campaign predicted by uplift models built on the treatment and

control datasets.

UpliftTree.E (Women’s merchandise campaign):

Total uplift = 4.5%

− [44.9%] womens = 0: upli f t = 1.1%

– [0.2%] history ≥ 1618.85: upli f t = −26.3%

– [99.8%] history < 1618.85: upli f t = 1.1%

− [55.3%] womens = 1: upli f t = 7.3%

– [0.9%] history ≥ 1317.02: upli f t = −9.4%

– [99.1%] history < 1317.02: upli f t = 7.5%

6. Conclusions

Our experiments confirm the usefulness of uplift modeling

in campaign optimization. Using uplift models, we can

predict new buyers much more precisely than using tradi-

tional response or propensity approaches. The effectiveness

in predicting new visits by response models is low, even if
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accuracy of predicting all visits is high. The reason for

this is that the response models do not distinguish between

spontaneous and new buyers. Quite often, the spontaneous

hits are more frequent, and the models tend concentrate on

them. Only if the uplift is correlated with the class itself,

the response models are able to indicate new buyers.

Additionally, our experiments confirm that dedicated up-

lift modeling algorithms are more effective than the naive

approach based on two separate models.
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