PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Requirements of 4G-Based Mobile Broadband on Future Transport Networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Long term evolution technologies provide new standards in mobile communications regarding available bandwidth. It is expected that users of one radio cell will share more than 100 Mbit/s in future. To take advantage of the full feature set of next generation mobile networks, transport network design has to face new requirements, caused by the architectural changes of LTE technologies. Especially the newly defined X2 interface impacts on the transport network requirements. X2 enables direct communication between evolved base stations (eNBs) and thus, enforces local solutions. At the same time a tendency of locating network elements at fewer, central sites to reduce operational expenditure can be observed, in particular concerning the transport layer. This leads to the question of how the direct X2 connection of eNBs on the logical layer can be accommodated with a general centralization of transport networks. Our considerations show that for LTE, a centralized transport network is able to realize the local meshing between eNBs. However, for LTE Advanced, the standards currently discussed by the 3GPP initiative could lead to enhanced requirements on the X2 interface latency. Consequently, the implications for the network architecture have to be analyzed in more detail.
Rocznik
Tom
Strony
21--28
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
autor
autor
autor
autor
autor
  • Deutsche Telekom Netzproduktion GmbH, Fixed Mobile Engineering Deutschland, Heinrich-Hertz-Str. 3-7, 64295 Darmstadt, Germany, matthias.fricke@telekom.de
Bibliografia
  • [1] “3rd Generation Partnership Project” [Online]. Available: http://www.3gpp.org/
  • [2] “The advanced LTE toolbox for more efficient delivery of better user experience”, Technical White Paper, Nokia Siemens Networks, 2011.
  • [3] S. Parkvall, E. Dahlman, A. Furusk¨ar, Y. Jading, M. Olsson, S. W¨anstedt, and K. Zangi, “LTE-advanced – evolving LTE towards IMT-advanced”, in Proc. IEEE Veh. Technol. Conf., Marina Bay, Singapore, 2008.
  • [4] P. E. Mogensen, T. Koivisto, K. I. Pedersen, I. Z. Kovacs, B. Raaf, K. Pajukoski, and M. J. Rinne, “LTE Advanced: the path towards gigabit/s in wireless mobile communications”, in Proc. Wireless VITAE’09, Aalborg, Denmark, 2009, pp. 147–151.
  • [5] A. Kumar and Y. Liu, “LTE-Advanced: The roadmap to 4G mobile wireless networks”, Global J. Comp. Sci. Technol., vol. 10, no. 4, pp. 50–53, 2010.
  • [6] A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T. Thomas, “LTE-Advanced: Next-generation wireless broadband technology”, IEEE Wirel. Communi., vol. 17, no. 3, pp. 10–22, 2010.
  • [7] J. Parikh and A. Basu, “LTE Advanced: The 4G mobile broadband technology”, Int. J. Comp. Appl., vol. 13, no. 5, pp. 17–21, 2011.
  • [8] M. Fricke, A. Heckwolf, R. Herber, R. Nitsch, and S. Wevering, “Anforderungen von mobilem Breitband auf der Basis von 4G an zuk¨unftige Transportnetze”, in Photonische Netze (ITG-FB 228), ITG, Ed. Berlin: VDE Verlag, 2011, pp. 116–121.
  • [9] “2020: Beyond 4G: Radio Evolution for the Gigabit Experience”, White Paper, Nokia Siemens Networks, 2011.
  • [10] “Introducing LTE Advanced”, Application Note, Agilent Technologies, Nov. 2010.
  • [11] “Requirements related to technical performance for IMT-Advanced radio interface(s)”, Report ITU-R M.2134, 2008.
  • [12] G. Yuan, X. Zhang, W. Wang, and Y. Yang, “Carrier aggregation for LTE-Advanced mobile communication systems”, IEEE Commun. Mag., vol. 48, no. 2, pp. 88–93, 2010.
  • [13] K. I. Pedersen, F. Frederiksen, C. Rosa, H. Nguyen, L. G. U. Garcia, and Y. Wang, “Carrier aggregation for LTE-Advanced: Functionality and performance aspects”, IEEE Commun. Mag., vol. 49, no. 6, pp. 89–95, 2011.
  • [14] H. Holma and A. Toskala, LTE for UMTS – OFDMA and SC-FDMA Based Radio Access. Chichester: Wiley, 2009.
  • [15] M. Sawahashi, Y. Kishiyama, A. Morimoto, D. Nishikawa, and M. Tanno, “Coordinated multipoint transmission/reception techniques for LTE-advanced [Coordinated and Distributed MIMO]”, IEEE Wirel. Commun., vol. 17, no. 3, pp. 26–34, 2010.
  • [16] T. Beniero, S. Redana, J. Hamalainen, and B. Raaf, “Effect of relaying on coverage in 3GPP LTE-Advanced”, in Proc. IEEE Veh. Technol. Conf., Barcelona, Spain, 2009.
  • [17] E. Lang, S. Redana, and B. Raaf, “Business impact of relay deployment for coverage extension in 3GPP LTE-Advanced”, in Proc. Int. Worksh. LTE Evolution ICC 2009, Dresden, Germany, 2009.
  • [18] R. Irmer and F. Diehm, “On coverage and capacity of relaying in LTE-Advanced in example deployments”, in Proc. IEEE 19th Int. Sympo. Personal, Indoor and Mobile Radio Communications, Las Vegas, USA, 2008.
  • [19] A. Khandekar, N. Bhushan, J. Tingfang, V. Vanghi, “LTE-Advanced: Heterogeneous networks”, in Eur. Wirel. Conf., Lucca, Italy, 2010, pp. 978–982.
  • [20] M. Sauter, Grundkurs Mobile Kommunikationssysteme. Wiesbaden: Vieweg+Teubner, 2011.
  • [21] “3GPP TR 36.913, Requirements for further advancements for Evolved Universal Terrestrial Radio Access (E-UTRA)”, (LTE Advanced), (Release 9), 2009.
  • [22] R. Ballentin, M. Doll, “Downlink coordinated scheduling”, VDE ITG 5.2.4, Heidelberg, 2010.
  • [23] “Open base station architecture initiative”, BTS System Reference Document, Version 2.0, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BATA-0016-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.