Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In order to realize realistic remote communication between multipoint remote places via the Internet, displaying the appearance of remote participants by transmission of a video streaming with the large-sized display system is effective. However, the display of video streaming with sufficient quality is difficult because the specification of a commercial projector and large-sized display equipment is low-resolution. In order to these issues, we focus on the tiled display wall technology which configure effective wide-area screen system with two or more LCD panels and tried to display a highresolution video streaming on the large-scale display environment. In this paper, we have constructed remote communication environment with tiled display wall in multipoint sites and have conducted experiment in order to study the possibility of realizing realistic remote communication with multi-video streaming. As these results, these video streaming from each site have been shown to display more high-quality than magnified view of video image by a single small camera. Moreover, we have measured the network throughput performance for each transmitted and received video streaming in this envi- ronment. From measurement results, the steady throughput performance has been gained at the case of each transmitted and received video streaming.
Rocznik
Tom
Strony
43--49
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Central Office for Information Infrastructure, Osaka University, Ibaraki, Osaka, 567-0047, Japan, eba@cmc.osaka-u.ac.jp
Bibliografia
- [1] G. Kong, J. Stanton, S. Newhouse, and J. Darlington, “Collaborative visualization over the Access Grid using the ICENI Grid Middleware”, in Proc. UK e-Science All Hands Meeting, Nottingham, UK, 2003, pp. 393–396.
- [2] Y. Ebara, N. Kukimoto, J. Leigh, and K. Koyamada, “Tele-immersive collaboration using high-resolution video in tiled displays environment”, in Proc. IEEE 21st Int. Conf. Adv. Inform. Netw. Appl. AINA 2007, Niagara Falls, Canada, 2007, vol. 2, pp. 953–958.
- [3] J. Leigh, T. A. DeFanti, A. E. Johnson, M. D. Brown, and D. J. Sandin, “Global tele-immersion: better than being there”, in Proc. 7th Int. Conf. Artif. Real. Tele-Existence, Esbjerg, Denmark, 1997, pp. 10–17.
- [4] A. Sadagic, H. Towles, L. Holden, K. Daniilidis, and B. Zeleznik, “Tele-immersion Portal: towards an ultimate synthesis of computer graphics and computer vision systems”, in Proc. 4th Ann. Int. Worksh. Presence, Philadelphia, Pensylvania, USA, 2001.
- [5] K. S. Park, A. Kapoor, C. Scharver, J. Leigh, “Exploiting multiple perspectives in tele-immersion”, in Proc. Immersive Projection Technol. Worksh. IPT 2000, Ames, Iowa, USA, 2000.
- [6] N. Kelshikar, X. Zabulis, J. Mulligan, K. Daniilidis, V. Sawant, S. Sinha, T. Sparks, S. Larsen, H. Towles, K. Mayer-Patel, H. Fuchs, J. Urbanic, K. Benninger, R. Reddy, and G. Huntoon, “Real-time terascale impementation of tele-immersion”, in Proc. Int. Conf. Comput. Sci., Saint Petersburg, Russia, 2003.
- [7] H. Towles, S. Kum, T. Sparks, S. Sinha, S. Larsen, and N. Beddes, “Transport and rendering challenges of multi-stream 3D teleimmersion data”, in Proc. NSF Lake Tahoe Worksh. Collabor. Virtual Real. Visual. CVRV 2003, Tahoe City, CA, USA, 2003.
- [8] S. J. Gibbs, C. Arapis, and C. J. Breiteneder, “TELEPORT-towards immersive copresence”, Multimedia Systems, no. 7, pp. 214–221, Springer, 1999.
- [9] W. Chen, H. Towles, L. Nyland, G. Welch, and H. Fuchs, “Toward a compelling sensation of telepresence: demonstrating a portal to a distant (static) office”, in Proc. IEEE Visualization 2000, Salt Lake City, Utah, USA, 2000, pp. 327–333.
- [10] P. Kauff and O. Schreer, “An immersive 3D video-conferencing system using shard virtual team user environments”, in Proc. 4th Int. Conf. Collab. Virtual Environ. CVE’02), Bonn, Germany, 2002, pp. 105–112.
- [11] W. Matusik and H. Pfister, “3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes”, ACM Trans. Graphics, vol. 23, no. 3, pp. 814–824, 2004.
- [12] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti, “Surround-screen projection-based virtual reality: the design and implementation of the CAVE”, in Proc. 20st Ann. Conf. Comp. Graphics Interact. Techniq. SIGGRAPH 1993, Anaheim, California, USA, 1993, pp. 135–142.
- [13] J. Leigh, T. A. DeFanti, A. E. Johnson, M. D. Brown, and D. J. Sandin, “Global Tele-Immersion: Better than Being There”, in Proc. Int. Conf. Artif. Real. Tele-existence ICAT’97, Tokyo, Japan, 1997, pp. 10–17.
- [14] T. Ogi and M. Sakai, “Communication in the networked immersive environment”, in Proc. ASIAGRAPH 2006, Yokohama, Japan, 2006, pp. 67–72.
- [15] T. Ando, K. Mashitani, M. Higashino, H. Kanayama, H. Murata, Y. Funazou, N. Sakamoto, H. Hazama, Y. Ebara, and K. Koyamada, “Multiview image integration system for glassless 3D display”, SPIE, vol. 5664, pp. 158–166, 2005.
- [16] Y. Ebara, Te. Nabuchi, N. Sakamoto, and K. Koyamada, “Study on eye-to-eye contact by multi-viewpoint videos merging system for tele-immersive environment”, in Proc. IEEE Int. Worksh. Netw.- based Virt. Real. Tele-existence INVITE 2006, 2006, pp. 647–651.
- [17] C. Li, H. Lin, and J. Shi, “A survey of multi-projector tiled display wall construction”, in Proc. 3rd Int. Conf. Image Graphics ICIG’04, Hong Kong, China, 2004, pp. 452–455.
- [18] T. Ni, G. S. Schmidt, O. G. Staadt, M. A. Livingston, R. Ball, and R. May, “A survey of large high-resolution display technologies, techniques, and applications” in Proc. IEEE Conf. Virtual Reality VR 2006, Alexandria, Virginia, USA, 2006, pp. 223–236.
- [19] G. Humphreys, I. Buck, M. Eldridge, and P. Hanrahan, “Distributed Rendering for Scalable Displays”, in Proc. IEEE Supercomputing Conf. SC 2000, 2000, Dallas, Texas, USA.
- [20] G. Humphreys, M. Houston, Y. Ng, R. Frank, S. Ahern, P. Kirchner, and J. T. Klosowski, “Chromium: a stream-processing framework for interactive rendering on clusters”, in Proc. 29th Ann. Conf. Comp. Graphics Interactive Techn. SIGGRAPH’02, San Antonio, Texas, USA, 2002, pp. 693–702.
- [21] K. Doerr and F. Kuester, “CGLX: a scalable, high-performance visualization framework for networked display environments”, IEEE Trans. Visualization and Comp. Graphics, vol. 17, no. 3, pp. 320–332, 2011.
- [22] L. Renambot, A. Rao, R. Singh, B. Jeong, N. Krishnaprasad, V. Vishwanath, V. Chandrasekhar, N. Schwarz, A. Spale, C. Zhang, G. Goldman, J. Leigh, and A. Johnson, “SAGE: the scalable adaptive graphics environment”, in Proc. Worksh. Adv. Collaborative Envir. WACE 2004, Nice, France, 2004.
- [23] J. Byungil, L. Renambot, R. Jagodic, R. Singh, J. Aguilera, A. Johnson, and J. Leigh, “High-performance dynamic graphics streaming for scalable adaptive graphics environment”, in Proc. Supercompuing SC 2006, Tampa, Florida, USA, 2006, p. 24.
- [24] Y. Ebara and Y. Shibata, “Study on tele-immersive communication with multi-video streaming on tiled display wall”, in Proc. IEEE 13th Int. Conf. Netw.-Based Inform. Sys. NBiS 2010, Takayama, Gifu, Japan, 2010, pp. 439–444.
- [25] Y. Ebara, N. Kukimoto, and K. Koyamada, “Evaluation experiment on eye-to-eye contact in remote communication with tiled displays environments”, in Proc. IEEE 22nd Int. Conf. Adv. Information Netwo. Appli. -Workshop- AINA 2008, Okinawa, Japan, 2008, pp. 1017–1022.
- [26] “SAGE: Scalable Adaptive Graphics Environment” [Online]. Available: http://www.sagecommons.org/
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BATA-0015-0005