PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Higher Order Cumulants for Identification and Equalization of Multicarrier Spreading Spectrum Systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes two blind algorithms for multicarrier code division multiple access (MC-CDMA) system equalization. In order to identify, blindly, the impulse response of two practical selective frequency fading channels called broadband radio access network (BRAN A and BRAN E) normalized for MC-CDMA systems, we have used higher order cumulants (HOC) to build our algorithms. For that, we have focussed on the experimental channels to develop our blind algorithms able to simulate the measured data with high accuracy. The simulation results in noisy environment and for different signal to noise ratio (SNR) demonstrate that the proposed algorithms are able to estimate the impulse response of these channels blindly (i.e., without any information about the input), except that the input excitation is i.i.d. (identically and independent distributed) and non-Gaussian. In the part of MC-CDMA, we use the zero forcing and the minimum mean square error equalizers to perform our algorithms. The simulation results demonstrate the effectiveness of the proposed algorithms.
Rocznik
Tom
Strony
74--84
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
autor
autor
autor
  • Polydisciplinary Faculty, Sultan Moulay Slimane University, Po. Box. 523, Beni Mellal, Morocco, safi.said@gmail.com
Bibliografia
  • [1] S. Safi and A. Zeroual, “Modelling solar data using high order statistics”, J. Stat. Comp. Simul., A.M.S.E., Adv. Modell. Anal., vol. 6, no. 2, pp. 1–16, 2002.
  • [2] S. Safi and A. Zeroual, “MA system identification using higher order cumulants: application to modelling solar radiatio”, J. Stat. Comp. Simul., Taylor & Francis, vol. 72, no. 7, pp. 533–548, 2002.
  • [3] S. Safi and A. Zeroual, “Blind identification in noisy environment of non-minimum phase Finite Impulse Response (FIR) using higher order statistics”, Int. J. Sys. Anal. Modell. Simul., Taylor & Francis, vol. 43, no. 5, pp. 671–681, 2003.
  • [4] S. Safi and A. Zeroual, “Blind parametric identification of linear stochastic non-Gaussian FIR systems using higher order cumulants”, Int. J. Sys. Sci., Taylor & Francis, vol. 35, no. 15, pp. 855–867, 2004.
  • [5] S. Safi, J. Antari, A. Zeroual, and A. Lyhyaoui, “Parametric identification of linear finite impulse response non-Gaussian systems using higher order cumulants”, in Proc. Inf. Commun. Technol. Int. Symp. ICTIS’2005, Tetuan, Morocco, 2005, pp. 317–322.
  • [6] S. Safi and A. Zeroual, “Blind non-minimum phase channel identification using 3rd and 4th order cumulants”, Int. J. Sig. Proces., vol. 4, no. 2, pp. 158–167, 2007.
  • [7] B. Sadler, G. B. Giannakis, and K.-S. Lii, “Estimation and detection in the presence of non-Gaussian noise”, IEEE Trans. Sig. Proces., vol. 42, no. 10, pp. 2729–2741, 1994.
  • [8] W. Robert, Jr. Heath, and G. B. Giannakis, “Exploiting input cyclostationarity for blind channel identification in OFDM systems”, IEEE Trans. Sig. Proces., vol. 47, no. 3, pp. 848–856, 1999.
  • [9] M. Boumahdi, F. Glangeaud, and J. L. Lacoume, “Déconvolution aveugle en sismique utilisant les statistiques d’ordre supérieur”, in Proc. 14th GRETSI Symposium, Juan-Les-Pins, France, 1993, pp. 89–92.
  • [10] K. D. Kammeyer and B. Jelonnek, “A new fast algorithm for blind MA-system identification based on higher order cumulants”, in SPIE Adv. Sig. Proc. Algorithms, Architectures and Implementations, San Diego, Spain, 1994.
  • [11] D. Boss, B. Jelonnek, and K. D. Kammeyer, “Decision-feed back eigenvector approach to blind ARMA equalization and identification”, in Proc. IEEE-SP/ATHOS Worksh. Higher Order Stat., Girona, Spain, 1995.
  • [12] S. A. Ashbeili, M. T. Ozgen, A. E. Cetin, and A. N. Venetsapoulos, “Cumulant-based parametric multichannel FIR system identification methods”, in Proc. IEEE Sig. Proces. Worksh. Higher Order Stat., South Lake Tahoe, USA, 1993, pp. 200–204.
  • [13] J. K. Tugnait, “Approaches to FIR system identification with noisy data using higher order statistics”, IEEE Trans. ASSP, vol. 38, no. 1, pp. 1307–1317, 1990.
  • [14] A. Swami, and J. Mendel, “Closed form recursive estimation of MA coefficients using autocorrelation and third order cumulants”, IEEE ASSP, vol. 37, no. 11, 1989.
  • [15] S. Safi and A. Zeroual, “Modelling solar data using high order statistic techniques: new method proposed”, in Proc. Int. Conf. Model. Simul. MS’99, Santiago de Compostela, Spain, 1999, vol. II, pp. 157–167.
  • [16] R. Pan and C. L. Nikias, “The complex cepstrum of higher order cumulants and non minimum phase system identification”, IEEE Trans. ASSP, vol. 36, no. 2, 1988.
  • [17] B. Friedlander and B. Porat, “Asymptotically optimal estimation of MA and ARMA parameters of non-Gaussian processes from high-order moments”, IEEE Trans. Autom. Control, vol. 35, no. 1, pp. 27–37, 1990.
  • [18] C. L. Nikias, “ARMA bispectrum approach to non minimum phase system identification”, IEEE Trans. ASSP, vol. 36, no. 4, 1988.
  • [19] J. K. Tugnait, “Identification of non-minimum phase linear stochastic systems”, Automatica, vol. 22, no. 4, pp. 487–464, 1986.
  • [20] J. K. Tugnait, “Identification of linear stochastic systems via second and fourth order cumulant matching”, IEEE Trans. Info. Theory, vol. 33, no. 3, 393–407, 1987.
  • [21] S. Safi, A. Zeroual, and M. M. Hassani, “Parametric identification of non-Gaussian signals using diagonal slice cumulants, application to modelling solar process”, in Proc. Microwave Symp. MS’2000, Tetouan, Morocco, 2000, pp. 345–350.
  • [22] W. Jun and H. Zhenya, “Criteria and algorithms for blind source separation based on cumulan”, Int. J. Electron., vol. 81, no. 1, pp. 1–14, 1996.
  • [23] L. Ju and H. Zhenya, “Blind identification and equalization using higher-order cumulants and ICA algorithms”, in Proc. Int. Conf. “Neural Networks and Brain ICNNB’98, Beijing, China, 1998.
  • [24] G. B. Giannakis and J. Mendel, “Cumulant-based order determination of non-Gaussian process ARMA models”, IEEE Trans. ASSP, vol. 38, pp. 1411–1422, 1993.
  • [25] J. R. Fonollosa and C. L. Nikias, “Wigner higher-order moment spectra: definitions, properties, computation and applications to transient signal detection”, IEEE Trans. Sig. Proces., vol. 41, no. 1, pp. 245–266, 1993.
  • [26] X. D. Zhang and Y. S. Zhang, “FIR system identification using higher order statistics alone”, IEEE Trans. Sig. Proces., vol. 42, no. 12, pp. 2854–2858, 1994.
  • [27] ETSI TS 101 475 V1.3.1, “Broadband Radio Access Networks (BRAN), HIPERLAN Type 2, Physical (PHY) layer”, 2001.
  • [28] ETSI TR 101 031 V2.2.1, “Broadband Radio Access Networks (BRAN), (HIPERLAN) Type 2”, Requirements and architectures for wireless broadband access, 1999.
  • [29] J. M. Kahn and K.-P. Ho, “Spectral efficiency limits and modulation/detection techniques for DWDM systems”, IEEE. J. Sel. Topics in Quant. Electron, vol. 10, pp. 259–272, 2004.
  • [30] J.-P. M. G. Linnartz, “Performance analysis of synchronous MC-CDMA in mobile rayleigh channel with both delay and doppler spreads”, IEEE Trans. Veh. Technol., vol. 50, no. 6, 2001.
  • [31] J. M.-M. Anderson and G. B. Giannakis, “Noisy input output system identification using cumulants and the Streiglitz-McBride algorithm”, IEEE Trans. Sig. Proces. Mag., vol. 44, no. 4, pp. 1021–1024, 1996.
  • [32] S. Kaiser, “OFDM-CDMA versus DS-CDMA: performance evaluation for fading channels”, in Proc. IEEE Int. Conf. Communications ICC’95, Seattle, USA, 1995, pp. 1722–1726.
  • [33] J. G. Proakis, Digital Communications. New York: Mc Graw Hill, 2000.
  • [34] I. Cosovic, M. Schnell, and A. Springer, “Combined pre- and postequalization for uplink time division duplex MC-CDMA in fading channels”, in Proc. Int. Worksh. Multi-Carrier Spread-Spectrum MC- SS’03, Wessling, Germany, 2003, pp. 439–450.
  • [35] R. Le Couable and M. Helard, “Perforamnce of single and multi-user detection techniques for MC-CDMA system over channel model used for HIPERLAN2”, in Proc. IEEE Spread-Spectrum Techniq. Appl., Parsippany, New Jersey, 2000, pp. 718–722.
  • [36] S. Verdu, Multiuser Detection. Cambrigde: Cambridge University Press, 1998.
  • [37] N. Yee, J.-P. M. G. Linnartz, and G. Fettweis, “Multi-carrier-CDMA in indoor wireless networks”, in Proc. Conf. PIMRC’93, Yokohama, Japan, 1993, pp. 109–113.
  • [38] C. L. Nikias and J. M. Mendel, “Signal processing with higher order spectra”, IEEE Sig. Proces. Mag., vol. 10, pp. 10–37, 1993.
  • [39] L. Srinivas and K. V. S. Hari, “FIR system identification using higher order cumulants: a generalized approach”, IEEE Trans. Sig. Proces., vol. 43, no. 12, pp. 3061–3065, 1995.
  • [40] Y. Xiao, M. Shadeyda, and Y. Tadokoro, “Over-determined C(k,q) formula using third and fourth order cumulants”, Eletron. Lett., vol. 32, pp. 601–603, 1996.
  • [41] X. D. Zhang and Y. S. Zhang, “ Singular value decompositionbased MA order determination of non-Gaussian ARMA models”, IEEE Trans. Sig. Proces., vol. 41, pp. 2657–2664, 1993.
  • [42] S. Safi, “Identification aveugle des canaux `a phase non minimale en utilisant les statistiques d’ordre sup´erieur: application aux r´eseaux mobiles”. Th`ese d’Habilit´e, Cadi Ayyad University, Marrakesh, Morocco, 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BATA-0013-0054
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.