PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tunneling Activities Detection Using Machine Learning Techniques

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tunnel establishment, like HTTPS tunnel or related ones, between a computer protected by a security gateway and a remote server located outside the protected network is the most effective way to bypass the network security policy. Indeed, a permitted protocol can be used to embed a forbidden one until the remote server. Therefore, if the resulting information flow is ciphered, security standard tools such as application level gateways (ALG), firewalls, intrusion detection system (IDS), do not detect this violation. In this paper, we describe a statistical analysis of ciphered flows that allows detection of the carried inner protocol. Regarding the deployed security policy, this technology could be added in security tools to detect forbidden protocols usages. In the defence domain, this technology could help preventing information leaks through side channels. At the end of this article, we present a tunnel detection tool architecture and the results obtained with our approach on a public database containing real data flows.
Rocznik
Tom
Strony
37--42
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
autor
autor
autor
Bibliografia
  • [1] HTTPHost [Online]. Available: http://www.htthost.com
  • [2] STunnel [Online]. Available: http://www.stunnel.org
  • [3] J. Erman, A. Mahanti, and M. Arlitt, “Internet traffic identification using machine learning”, in Proc. IEEE GLOBECOM’06, San Francisco, USA, 2006.
  • [4] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC: Multilevel traffic classification in the dark”, in Proc. ACM SIGCOMM’05, Philadelphia, USA, 2005.
  • [5] A. W. Moore and D. Zuev, “Internet traffic classification using bayesian analysis techniques”, in Proc. ACM SIGMETRICS’05, Bauff, Canada, 2005.
  • [6] T. T. Nguyen and G. Armitage, “A survey of techniques for Internet traffic classification using machine learning”, IEEE Communications Surveys and Tutorials, vol. 10, no. 4, pp. 56–76, 2008 [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04738466
  • [7] L. Bernaille and R. Teixeira, “Early recognition of encrypted applications”, in Proc. PAM 2007, Louvain-la-neuve, Belgium, 2007.
  • [8] M. Dusi, M. Crotti, F. Gringoli, and L. Salgarelli, “Detection of encrypted tunnels across networks boundaries”, in Proc. IEEE ICC’08, Beijing, China, 2008.
  • [9] A. W. Moore, D. Zuev, and M. L. Crogan, “Discriminators for use in flow-based classification”, Techn. Rep., 2008.
  • [10] W. Li, M. Canini, A. W. Moore, and R. Bolla, “Efficient application identification and the temporal and spatial stability of classification schema”, Comp. Netwo., vol. 53, no. 6, 2009.
  • [11] N. Williams, S. Zander, and G. Armitage, “A preliminary performance comparison of five machine learning algorithms for practical IP traffic flow classification”, in Proc. ACM SIGICOMM’06, Pisa, Italy, 2006.
  • [12] Tcpdump/Libpcap [Online]. Available: http://www.tcpdump.org
  • [13] MAWI Working group traffic archive [Online]. Available: http://mawi.wide.ad.jp/mawi/
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BATA-0013-0039
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.