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Abstract
This paper deals with the problem of the scattering of surface water waves by underwater
obstacles. The main goal of the investigations is to estimate the efficiency of such structures
in protecting sea shelf zones from open sea waves. A useful measure of the protection is the
ratio of the square of the amplitude of the transmitted wave to the square of the amplitude of
the arriving wave. The problem is formulated in terms of the finite difference method. It is
shown that the discrete approach to the problem leads to eigenvalue problems for two matrices
resulting from the discrete description. As compared to analytical formulation, the discrete
method may be convenient in application to unsteady problems and obstacles of complicated
geometry.
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1. Introduction

Underwater obstacles are constructed to protect sea shelf zones from open sea waves.
A typical form of such a structure is a long submerged breakwater of rectangular or
trapezoidal cross-section, placed at a certain distance from the sea shore. A water
wave arriving from the open sea is partially reflected from the obstacle and partially
transmitted over it. In this way only a part of the incoming wave energy is transmitted
to the protected area. In order to describe the phenomenon, we are going to consider
a linear problem of water wave scattering by a rectangular barrier submerged in water
of constant depth. With respect to the linear theory, the average energy of a monochro-
matic wave propagating in water of constant depth is proportional to the square of the
wave amplitude, and therefore the energy ratio is assumed to be the square of the
amplitudes of incoming waves to the square of the amplitudes of transmitted waves.
The ratio depends on the water depth, the incoming wave length and the geometry of
the immersed structure. With regard to engineering needs, it is of interest to estimate
efficiency ratios for a wide range of wave lengths and obstacle dimensions. In order to
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estimate the ratio, it is sufficient to confine our attention to the plane problem depen-
dent on two spatial independent variables and time. Thus, only a normal incidence of
infinitesimal waves on two-dimensional rectangular obstacles is taken into account.
For steady harmonic waves, the description of the problem may be reduced to the
time-independent problem. An analytical solution of such a problem was given by
Mei and Black (1969). Their formulation led to integral equations which were solved
by means of eigenfunction expansions of the velocity potential for different regions
of the fluid (in front of the structure, over the structure, and behind it). A wide range
of problems associated with the scattering of water waves by barriers is discussed in
the Mandal and Chakrabarti monograph (2000). The authors discussed major math-
ematical tools for handling various boundary value problems of wave scattering. In
particular, they reduced the problem to two integral equations corresponding to sym-
metric and anti-symmetric potentials. The so-called edge condition at corner points of
a rectangular barrier was taken into account, and the relevant singular integral equa-
tions were solved by a multi-term Galerkin approximation. For a more complicated
geometry it would be difficult to construct an analytical solution to the abovemen-
tioned problem, and therefore it is reasonable to resort to a discrete description of
the phenomenon. In the present paper we resort to a discrete formulation, using the
finite difference method. With the discrete approach, instead of the continuous fluid
domain, a finite set of selected nodal points is taken into account. Obviously, such
a formulation is only an approximation of the original task, but it is expected that it
can provide reliable results of acceptable accuracy. With this formulation, the scatter-
ing problem for steady harmonic waves will be reduced to two subsequent eigenvalue
problems for square matrices resulting from the finite difference description of the
original task. In the case of transient wave scattering, a solution to the problem in
question requires the integration of the governing equations in the time domain.

2. Formulation of the Problem: Preliminary Remarks

In the following, we confine our attention to the plane problem of the scattering of
surface waves by a rectangular obstacle, as shown schematically in Fig. 1. A train
of surface water waves arrives from the left-hand side of the obstacle (from negative
values of the x-coordinate) and propagates to the right, in the direction of positive
values of the horizontal coordinate. Because of the obstacle, the arriving waves are
accompanied by reflected waves, propagating to the left, and by transmitted waves,
propagating to the right. In order to describe the phenomenon, we follow the usual
assumptions of a perfect fluid, small wave amplitudes, and a potential motion with
the velocity potential Φ(x, z, t).

The potential satisfies Laplace’s equation

∇2Φ(x, z, t) = 0 (1)
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Fig. 1. Transmission of surface waves over an underwater obstacle

in the fluid domain and appropriate boundary conditions. With respect to the descrip-
tion of the figure, the boundary conditions read

∂Φ
∂x
= 0, |x| = c, 0 ≤ z < d, (2)

∂Φ
∂z
= 0, |x| > c, z = 0, and |x| < c, z = d, (3)

∂2Φ
∂t2 + g

∂Φ
∂z
= 0, |x| < ∞, z = h, (4)

where g is the gravitational acceleration.
The above conditions are supplemented by radiation conditions that there are

right- and left-going waves at x → −∞ and only right-going waves at x → ∞. For the
steady state harmonic motion considered, it is convenient to introduce the reduced
(spatial) potential φ(x, z) according to the formula

Φ(x, z, t) = φ(x, z) e−iωt , (5)

where i is the imaginary unit and ω is the angular frequency.
According to this notation, a train of surface waves is represented by the ve-

locity potential Re
[
φ(x, z) e−iωt

]
. The reduced potential in equation (5) also satisfies

Laplace’s equation and relevant boundary conditions. The latter conditions are similar
to the above except for the last one, which assumes the form

∂φ

∂z
−
ω2

g
φ = 0, |x| < ∞, z = h. (6)

The potential for each of the regions: x < −c and x > c is expressed in the form of a lin-
ear combination of appropriate modes resulting from a solution of Laplace’s equation
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by the Fourier method of separation of variables. For the constant water depth, the
eigenmodes of the solution are

cosh k0z,
cos k jz, j = 1, 2, . . . , 0 ≤ z ≤ h, (7)

where the first mode is the propagation mode, with k0 being the wave number, and the
remainder functions are the evanescent modes. The numbers k0 and k j in the relations
are the real roots of the dispersion relations

α =
ω2h
g
= k0h tanh k0h,

α =
ω2h
g
= −k jh tan k jh, j = 1,2, . . .

(8)

In accordance with equation (5), only the propagating mode is retained for large dis-
tances from the obstacle. It means that for the known incidence potential Φinc(x, z, t),
the reflected and transmitted potentials are equal to the incidence potential multiplied
by a complex number, i.e. Φre f = RΦinc and Φtrans = TΦinc where R and T are the re-
flection and transmission coefficients, respectively. Thus, in the far fields of the fluid,
the potentials are

Φ(x, z, t) ≈


TΦinc(x, z, t) as x → ∞,

Φinc(x, z, t) + RΦinc(−x, z, t) as x → −∞.
(9)

The main goal of our further investigation is to calculate the reflection and transmis-
sion coefficients for an assumed incident wave and selected dimensions of the rectan-
gular obstacle. According to the relations presented above, we will assume that the last
formulae hold for finite distances from the obstacles. For our needs, it is convenient
to assume unit amplitude of the incident potential and write

Φinc =
cosh k0z
cosh k0h

ei(k0x−ωt),

Φre f = R
cosh k0z
cosh k0h

e−i(k0x+ωt),

Φtrans = T
cosh k0z
cosh k0h

ei(k0x−ωt).

(10)
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The potential and its partial derivatives in the first, left region of the fluid are written
in the form

ΦI =
cosh k0z
cosh k0h

[
eik0x + Re−ik0x

]
e−iωt ,

∂ΦI

∂x
= ik0

cosh k0z
cosh k0h

[
eik0x − Re−ik0x

]
e−iωt ,

∂ΦI

∂t
= −iω

cosh k0z
cosh k0h

[
eik0x + Re−ik0x

]
e−iωt .

(11)

It may be seen that
∂ΦI

∂x
= −

k0

ω

1 − R e−2ik0x

1 + R e−2ik0x
∂ΦI

∂t
. (12)

The relation defines the radiation condition for the left domain of the fluid. It may
also be written in the form

∂ΦI

∂x
= ik0

1 − R e−2ik0x

1 + R e−2ik0x ΦI = ik0R∗(x) ΦI . (13)

In a similar way, for the right domain of the fluid we have the analogous relations

ΦII = T
cosh k0z
cosh k0h

eik0x e−iωt ,

∂ΦII

∂x
= ik0T

cosh k0z
cosh k0h

eik0x e−iωt ,

∂ΦII

∂t
= −iω

cosh k0z
cosh k0h

eik0x e−iωt .

(14)

In this case the radiation condition reads

∂ΦII

∂x
= ik0ΦII . (15)

The equations were derived under the assumption that the potentials are sufficiently
accurately described by the propagating mode only. In order to ensure the accuracy,
the radiation conditions are assumed at boundaries placed sufficiently far from the
obstacle.

3. Finite Difference Description of the Steady State Phenomenon

In the finite difference description, the continuous fluid domain is represented by a fi-
nite number of points obtained by an assumed spacing of the points in horizontal
and vertical directions. The infinite layer of fluid in Fig. 1 is substituted by the finite
domain with appropriate boundary conditions at the left (x = −l1) and right (x = l2)
boundaries. For the symmetric obstacle shown in Fig. 2, it is natural to assume that
l1 = l2.
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Fig. 2. A finite fluid domain

With respect to the spacing of points shown in the figure, Laplace’s equation is
substituted by a set of its finite difference analogues. For a typical nodal point (m, n)
in the fluid domain, the discrete analogue reads

−εφm−1,n − φm,n−1 + Kφm,n − φm,n+1 − εφm+1,n = 0, (16)

where

ε =

(
b
a

)2

, K = 2(1 + ε). (17)

A discrete solution of the system of equations (16) should satisfy the radiation condi-
tion that on the right side there is no wave propagating from infinity to the obstacle.
In order to satisfy this condition, let us look for a solution in the form

φm+s,n = φm,n exp(−s r a), (18)

where s is a natural number and r is a parameter.
In a matrix notation, the description means that the vector (φ) of φn values at nodal

points x = (m + s − 1)a is expressed by the vector (φ) at points x = (m − 1)a. The
procedure is similar to the Fourier method of separation of variables in constructing
a solution of equation (1) in continuum. In a formal way, the method of separation of
variables may be applied directly to equation (16). If r is a real number greater than
zero, then solution (18) describes a standing water wave decreasing exponentially with
s. If r is an imaginary number, a propagating wave is obtained. By substituting this
description into equation (16), the following is obtained

−φm,n−1 + (K − λ)φm,n − φm,n+1 = 0, (19)

where
λ = 2ε cosh ra. (20)

It may be seen that equation (19) contains unknown values of the potential at nodal
points xm = const. Knowing the boundary conditions at the bottom (z = 0) and at the
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free surface (z = h), it is a simple task to write equations (19) for all the points of the
same horizontal coordinate x = const

[A] (φ) = 0, (21)

where the square tri-diagonal matrix [A] is shown in equation (22).

[A] =



1
2

(K − λ) −1

−1 (K − λ − 1)

−1 (K − λ − 1)

· · ·

· · ·

−1 (K − λ − 1)

−1
1
2

(K∗ − λ)



, (22)

where

K∗ = K −
2bω2

g
. (23)

As it is seen, the problem was reduced to the eigenvalue problem for the system of
equations (21). The elements of the matrix, i.e. K and K∗, are real numbers. This sys-
tem of equations may be brought to another form. Thus, let us consider the substitution

(φ) = [D] (ϕ), (24)

where [D] is the diagonal matrix with non-zero elements

[D]diag =
[√

2, 1, . . . 1,
√

2
]
. (25)

Substitution of (24) into equation (21) and then pre-multiplication of the system with
the diagonal matrix [D] gives

[D] [A] [D] (ϕ) =
[
A∗

]
(ϕ) = 0, (26)

where the real symmetric matrix [A∗] is shown in equation (27).
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[
A∗

]
=



(K − λ) −
√

2
−
√

2 (K − λ) −1
−1 (K − λ) − 1

· · ·

· · ·

−1 (K − λ) −
√

2
−
√

2 (K∗ − λ)


. (27)

The system of equations of the problem was reduced to the standard eigenvalue prob-
lem for the matrix [A∗]. All the elements of the symmetric matrix are real numbers,
and thus all the eigenvalues λm m = 1, 2, . . . ,N , where N is the dimension of the ma-
trix, are real numbers (Bodewig 1957). One can prove that system (26) has N distinct
eigenvalues, i.e. λm , λn for m , n (m, n = 1, 2, . . . ,N), and thus the relevant eigen-
vectors of the matrix are mutually orthogonal. It is important to note that the matrix
[A] in equation (21) has the same set of eigenavalues. The associated eigenvectors
of the matrix are linearly independent. In order to calculate the eigenvalues and de-
scribe the associated eigenvectors of the matrices, it is convenient to introduce the
substitution

K − λ = 2 cosh κ, κ = u + iv. (28)

In a general case, the number κ in the equation is a complex number whose real and
imaginary parts are not arbitrary numbers. With respect to a range of real values of
the main diagonal of the matrix, the substitution leads to the following values

a) (K − λ) > 2, → v = 2π j, j = 0, 1, 2, . . . , cosh κ = cosh u,
b) −2 < (K − λ) < 2, → u = 0, cosh κ = cos v,
c) (K − λ) < −2, → v = (2 j − 1)π, j = 1, 2, . . . , cosh κ = − cosh u.

(29)

Let us now consider the basic system of equations (21) and case (29a). By substituting
this relation into the first of equations (21), the second component φ2 is expressed as
dependent on the first component φ1. The continuation of this procedure with the
subsequent equations gives

φm = φ1 cosh(m − 1)κ, m = 1, 2, . . . ,N, (30)

where N is the number of nodal points within the water depth h = (N − 1)b.
Substitution of this description into the last of equations (21) leads to the important

result that
α =

ω2b
g
= sinh κ tanh(N − 1)κ, (31)

which defines the discrete dispersion relation.
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This relation may be written in another form. The variable κ in the relation may
be assumed as κ = k∗b, and the equation may be transformed to the following form

α =
ω2h
g
= k∗h

[
1 +

1
3!

(k∗b)2
+

1
5!

(k∗b)4
+ · · ·

]
tanh k∗h. (32)

From the comparison of the equations with analytical result (8), it follows that for
a small value of κ = k∗b, say k∗b << 1 (sinh κ � κ in (31)), the discrete solution is
close to the analytical one, i.e. k∗ ≈ k0. In particular, eigenvector (30) of the matrix
[A] is close to the eigenfuction cosh k0z of the analytical solution. It may be seen that
the dispersion relation has only one root. The associated eigenvalue of the matrix is

λ0 = K − 2 cosh κ = 2(1 + ε − cosh κ0). (33)

From substitution of this equation into (20) it follows that

cosh ra = 1 −
cosh κ0 − 1

ε
< 1, (34)

and thus ra is an imaginary number.
It means that, in view of equation (5), the solution obtained (eigenvector 30) de-

scribes the propagation mode. Substitution of (29b) into equations (21) leads to the
solution

φm = φ1 cos(m − 1)κ, m = 1, 2, . . . ,N. (35)

As in the previous case, substitution of this description into the last equation of (21)
results in the following relation

α =
ω2b
g
= − sin κ tan(N − 1)κ, (36)

The equation has an infinite set of roots κ j = k∗jb ( j = 1, 2, . . .), where k∗j ( j = 1, 2, . . .)
form a new set of parameters. With this notation, equation (36) is written in the form

α =
ω2h
g
= −k∗jh

[
1 −

1
3!

(
k∗jb

)2
+

1
5!

(
k∗jb

)4
− · · ·

]
tan k∗jh, j = 1, 2, . . . (37)

Comparison of this relation with the analytical result (the second of equations 8)
shows that the discrete relation is close to the analytical one when sin κ j ≈ κ j . It may
be seen that for κ j = k∗jb the last condition may be satisfied only for the lowest roots of
the dispersion relation. It means that for higher roots (and associated components) the
discrepancy between the analytical and discrete descriptions increases. From equa-
tion (36) it follows that in the interval (0, π) there are (N − 1) distinct roots κ j of this
equation

2 j − 1
2(N − 1)

π < κ j <
j

N − 1
π , j = 1, 2, . . . ,N − 1. (38)
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In each of these intervals there is only one root of equation (36). One may show that
additional roots of this equation, outside of the range (0, π), will lead to eigenvectors
corresponding to the roots taken from the basic range (0, π). Therefore, it is sufficient
to confine our attention to the (N − 1) roots as it is described by (38). For this case,
one obtains

cosh r ja = 1 +
1
ε

(1 − cos κ j) , j = 1, 2, . . . ,N − 1. (39)

The associated eigenvectors (35) describe a standing wave whose amplitude decays
with distance measured from the source of disturbances (the solutions associated with
the roots κ1, κ2, . . . , κN−1 decay exponentially with distance measured from the obsta-
cle). For our further needs the most important is the lowest root

π

2(N − 1)
< κ1 <

π

N − 1
, →

π

2
< k∗1h < π. (40)

It may be shown that, for the third substitution (29), no real solution exits, and thus
the discrete formulation leads to the N eigenvectors of the description, as it should
be.

Let us now consider the finite fluid domain shown in Fig. 2. It is assumed that the
boundaries I − I (x = −l1) and II − II (x = l2) are chosen so far from the underwater
obstacle that it is justified to neglect standing waves and to describe the potential
functions at these boundaries only by the first eigenvector of set (21). These boundary
locations may be estimated using the first, lowest root of (39), i.e.

cosh r1a = 1 +
1 − cos κ1

ε
. (41)

For an assumed small number δ << 1 one can calculate lmin = −1/r1 ln δ. Thus, in-
stead of the infinite fluid layer, we will consider the finite fluid domain −l1 ≤ x ≤ l2.
As it was mentioned above, it is sufficient for our needs to confine our attention to
the spatial potential φ(x, z) and boundary conditions displayed in Fig. 2. Given the
assumed spacing of points, it is a simple task to write the set of equations (16) for
each of the nodal points. This system of equations is written in the matrix form

[AA](φ) = 0. (42)

For our needs it is convenient to divide the unknown vector (φ) into three parts: the first
(φI), corresponding to the nodal points I − I (x = −l1); the second (φ), correspond-
ing to the points (−l1 < x < l2); and the third, corresponding to the points II − II
(x = l2). In accordance with this division, the matrix of equations is divided into the
sub-matrices

[AA] =

 [A1] [A 2] [A3]
[C1] [C2] [C3]
[B3] [B2] [B1]

 , (43)
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where the matrices [A3] and [B3] are zero matrices while [A1], [C2] and [B1] are
square matrices. With respect to condition (13), the matrix [A1] is written in the form

A1 = A + 2ik0aεR∗I, (44)

where I is the unit matrix and

R∗ =
1 − Re2ik0l1

1 + Re2ik0l1
. (45)

In a similar way, given condition (15), the following equation holds

B1 = A − 2ik0aεI. (46)

The system of equations (43) is written in the form of the three matrix equations

A1 (φI) + A2 (φ) = 0,
C1 (φI) + C2 (φ) + C3 (φII) = 0,

B2 (φ) + B1 (φII) = 0.
(47)

Left multiplication of the second equation by CT
2 and of the third equation by BT

1 ,
where the superscript means the transpose, gives

C21 (φI) + C22 (φ) + C23 (φII) = 0,
B12 (φ) + B11 (φII) = 0. (48)

From these equations it follows that

(φ) = −
[
C22 − C23B−1

11 B12
]−1

C21(φI). (49)

Substitution of this equation into the first of equations (47) leads to the eigenvalue
problem [(

A − A2
[
C22 − C23B−1

11 B12
]−1

C21

)
− λI

]
(φI) = 0, (50)

where:
λ = −2ik0aεR∗. (51)

Equations (49) and (50) allow us to calculate R∗ and then the reflection coefficient R.
In a similar way, from equations (47) the following relation is obtained

(φII) − (B11 − B12C−1
22 C23)−1B12C−1

22 C21(φI) = 0. (52)

Knowing that

φII =
eik0l2

e−ik0l1

T
1 + Re2ik0l1

φI = λ
∗φI (53)

one can calculate the eigenvalue λ∗ and, finally, the transmission coefficient T . For
the linear conservative system considered, the following relation holds

R2 + T 2 = 1, (54)
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which may serve as an accuracy condition for theoretical calculations.
The solution obtained corresponds to a relatively simple geometry of the obsta-

cle. For a more complicated geometry of the underwater obstacle it may be more
convenient to calculate the relevant matrix C2 by the finite element method or by
the boundary element method. With these two methods some changes emerge in the
matrix C2, but the overall procedure of the solution remains unchanged. In order to
illustrate the solution derived, numerical calculations were made for a selected set of
parameters. Some of the results obtained in computations are illustrated in subsequent
Figures 3 and 4.
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Fig. 3. Distribution of the reflection and transmission coefficients with respect to k0h
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The graphs in the figures show the distributions of the reflection and transmission
coefficients with respect to the wave parameter k0h for selected dimensions of the
rectangular obstacle.

4. Time-Dependent Wave Scattering

The solution presented so far corresponds to the steady-state harmonic motion of
the fluid. With respect to laboratory experiments in a hydraulic flume it is also de-
sirable to consider the initial value problem of the fluid starting to move from rest.
The question arises how to estimate the transmission and reflection coefficients for
the time-dependent problem. As in the previous case, it seems reasonable to define
the coefficients by comparing the amplitudes of surface waves corresponding to the
cases with and without the obstacle present. Thus, let us consider the semi-infinite
fluid domain shown schematically in Fig. 5.

Fig. 5. Semi-infinite layer of fluid with a rectangular obstacle

The motion of the fluid is induced by a piston-type wave maker placed at the left
end of the fluid, which starts to move at an initial moment of time. The generated
waves are partially transmitted over the rectangular obstacle located at a certain dis-
tance from the generator. In order to confine our attention to a finite fluid domain, an
artificial boundary condition and a radiation condition should be assumed at a proper
distance from the obstacle, measured in the direction of the wave propagation. The
boundary condition should allow the arriving waves to pass by without any reflec-
tion. For the initial problem considered and a sufficiently short time measured from
the starting of the generator–fluid system, one may assume the zero velocity condition
at the boundary. In natural conditions, for instance in the case of an obstacle placed
at a sloping beach, a reflected wave propagates towards the open sea, and therefore,
in the model considered, the obstacle should also be placed sufficiently far from the
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generator plate. A solution to the initial-value problem is constructed using the poten-
tial formulation for the inviscid incompressible fluid. The potential Φ(x, z, t) should
satisfy Laplace’s equation (1) and appropriate initial and boundary conditions. With
respect to the description shown in Fig. 5, the boundary conditions read

∂Φ
∂x

∣∣∣∣∣
x=0
= ẋg(t),

∂Φ
∂x

∣∣∣∣∣
x=L1−c

=
∂Φ
∂x

∣∣∣∣∣
x=L1+c

= 0 for 0 ≤ z ≤ d,

∂Φ
∂x

∣∣∣∣∣
x=L1+L2

= 0, for 0 ≤ t < tmax

∂Φ
∂z
= 0 for


0 ≤ x ≤ l − c1, z = 0,

l1 − c ≤ x ≤ l1 + c, z = d,

l1 + c ≤ x ≤ l1 + l2, z = 0,
∂2Φ
∂t2 + g

∂Φ
∂z
= 0 for 0 ≤ x ≤ l1 + l2, z = h.

(55)

where tmax means time allowed in the computations.
In the case of a semi-infinite layer of fluid without any obstacle we confine our at-

tention to the rectangular fluid domain (0 ≤ x ≤ l1 + l2, 0 ≤ z ≤ h) with boundary con-
ditions similar to those described above. With respect to the problem shown schemat-
ically in Fig. 5, the generator motion is assumed in the following form (Wilde and
Wilde 2001)

xg(t) = dg [A(τ) cosωt + D(τ) sinωt] , (56)

where dg is a dimension unit (in this case one metre), ω is the angular frequency, t is
the time measured from the initial point, τ is a dimensionless time, and

A(τ) =
1
3!
τ3 exp(−τ), τ = ηt,

D(τ) = 1 −
(
1 + τ +

τ2

2!
+
τ3

3!

)
exp(−τ).

(57)

The parameter η in the equations is responsible for the growth in time of the gen-
erator displacement. In all cases considered, it was assumed that η = 2. Laplace’s
equation (1) is substituted by a set of its finite difference analogues. For a typical
nodal point (m, n), the discrete equations assume the form of equations (16), which
are then integrated in the time domain by the Wilson θ method (Bathe 1982). The
numerical computations were carried out for two cases: with and without the rect-
angular obstacle present within the fluid layer. In order to estimate the accuracy of
the theoretical approach, laboratory experiments were carried out. The experiments
were conducted in the wave flume at the Institute of Hydro-Engineering of the Polish
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Fig. 6A. Comparison of the theoretical and experimental results for the surface elevation at the point
x = 2.30 m (a) and the associated changes of the elevation caused by the rectangular obstacle (b)
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Fig. 6B. Continued
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Academy of Sciences in Gdańsk. The wave flume is 1.4 m high, 0.6 m wide and
64 m long. The motion of the fluid was induced by a programmable piston-type wave
generator, shown schematically in Fig. 5. The rectangular obstacle was installed at
a distance of 28 m from the generator face. The free surface elevation was recorded
by wave gauges installed at selected points of the flume. Theoretical computations
were performed for cases corresponding to those conducted in the laboratory experi-
ments. Some of the computation results are illustrated in figures 6A and 6B, where the
graphs show the evolution in time of the free surface elevation at the point x = 2.3 m
(Fig. 5). It may be seen from the graphs that the linear theory leads to sufficiently ac-
curate results only for long waves. In the case of waves propagating over the obstacle,
higher order components of the transmitted wave appear, and thus, in order to obtain
a reliable solution, non-linear effects of the solution should be taken into account. The
transmission coefficient (T in the figures) is calculated by comparing the free surface
elevations corresponding to the cases with and without the obstacle present. In the lin-
ear case, the coefficient results from the division of the respective wave amplitudes.
In the non-linear cases, observed in the laboratory flume experiments, this coefficient
is estimated by integrating the absolute value of the free surface elevation within the
range of time in which the wave behaves like a periodic wave. It may be seen from the
graphs that the theoretical coefficient exceeds the one obtained in the experiments.
The relevant reflection coefficient can be obtained from relation (54). It should be
noted here that such a definition of the transmission and reflection coefficients may
serve as a characteristic feature of the wave transmission only for a finite elapse of
time measured from the starting of the generator. With time the total energy of the
wave generation will be transmitted to the area behind the obstacle.

5. Concluding Remarks

The finite difference method is a practical tool for solving steady-state and time-depen-
dent problems of the scattering of water waves by underwater barriers. The method
is particularly efficient when applied to problems of a relatively simple geometry.
For more complicated geometries, it may be more convenient to calculate the funda-
mental sub-matrix of the formulation (matrix [C2] in equation 43) by means of the
finite element method or the boundary element method. With the latter two methods,
the overall procedure of the theoretical solution presented above remains unchanged.
For practical reasons, the most important thing is to construct a steady-state solu-
tion to a given problem, for which it is natural to characterise the phenomenon by
means of the reflection and transmission coefficients. Although the coefficients were
derived based on a linear description of the phenomenon, they can also be applied
to waves of moderate heights. The discrete formulation of the problem considered
leads to an eigenvalue problem for two matrices dependent on the assumed spacing
of nodal points within the fluid layer. The associated eigenvectors of the discrete de-
scription correspond directly to the analytical formulation obtained by the separation
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of variables. The method developed above may serve as a preliminary estimation of
the transmission of water waves over underwater breakwater structures protecting sea
shore zones.
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