Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Języki publikacji
Abstrakty
Sorption of Methylene Blue (MB) and Malachite Green (MG) dyes onto barks and leaves of four trees was examined with a batch method. The obtained sorption isotherms are well described by the Langmuir equation. The examined barks proved to have quite different sorption capacities. The highest values were recorded for the walnut tree bark (512 and 307 mg/g towards the MB and MG dyes, respectively) and the lowest capacities were observed for the birch tree bark (68 and 22 mg/g towards the MB and MG dyes, respectively). The studied leaves proved to have rather similar sorption capacities, i.e., from 210 to 286 mg/g for the MB dye and from 152 to 189 mg/g for the MG dye. The specific surface values calculated from the MB monolayer capacity are substantially higher than those obtained by the BET method, probably because of swelling of the test materials in an aqueous medium.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
69--79
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
autor
autor
- University of Technology and Life Sciences, Faculty of Technology and Chemical Engineering, Seminaryjna 3, 85-326 Bydgoszcz, Poland, dorota_z@utp.edu.pl
Bibliografia
- [1] McKay G., Porter J.F., Prasad G.R., 1999. The removal of dye colours from aqueous solutions by adsorption on low-cost materials. Water, Air and Soil Pollution 114(3-4), 423-438.
- [2] Ho Y.S., Ng J.C.Y., McKay G., 2000. Kinetics of pollutant sorption by biosorbents: Review. Separation & Purification Reviews 29(2), 189-232.
- [3] Sanghi R., Bhattacharya B., 2002. Review on decolorization of aqueous dye solutions by low cost adsorbents. Coloration Technol. 118(5), 256-269.
- [4] Crini G., 2006. Non-conventional low-cost adsorbents for dye removal: A review. Biores. Technol. 97, 1061-1085.
- [5] Polowczyk I., Zastrzyk A., Koźlecki T., Rudnicki P., Skawiński W., Sadowski Z., Sokołowski A., 2007. Application of fly ash agglomerates in the sorption of arsenic. Polish Journal of Chemical Technology 9(2), 37-41.
- [6] Szostak A., Ratajczak E., Bidzińska G., Gałecka A., 2004. The industrial wood residues market in Poland. Drewno – Wood 47(172), 69-89.
- [7] Teles de Vasconcelos L.A., González Beça C.G., 1997. A study on a continuous-flow process for the removal of Pb(II) ions in aqueous solution using fixed-bed columns packed with natural and activated pine bark. European Water Pollution Control 7(3), 7-18.
- [8] Martin-Dupont F., Gloaguen V., Granet R., Guilloton M., Morvan H., Krausz P., 2002. Heavy metal adsorption by crude coniferous barks: a modeling study. Journal of Environmental Science and Health, Part A 37(6), 1063-1073.
- [9] Dubey S.S., Gupta R.K., 2005. Removal behavior of Babool bark (Acacia nilotica) for submicro concentrations of Hg2+ from aqueous solutions: a radiotracer study. Sep. Purif. Technol. 41, 21-28.
- [10] Boving T.B., Neary K., 2007. Attenuation of polycyclic aromatic hydrocarbons from urban stormwater runoff by wood filters. Journal of Contaminant Hydrology 91, 43-57.
- [11] Morais L.C., Freitas O.M., Gonçalves E.P., Vasconcelos L.T., González Beça C.G., 1999. Reactive dyes removal from wastewaters by adsorption on eucalyptus bark: Variables that define the process. Wat. Res. 33(4), 979-988.
- [12] Morais L.C., Gonçalves E.P., Vasconcelos L.T., González Beça C.G., 2000. Reactive dyes removal from wastewaters by adsorption on eucalyptus bark: Adsorption equilibria. Env. Technol. 21(5), 577-583.
- [13] Saliba R., Gauthier H., Gauthier R., Petit-Ramel M., 2002. The use of eucalyptus bark for the adsorption of heavy metal ions and dyes. Ads. Sci. Technol. 20(2), 119-129.
- [14] Leitch A.E., Armstrong P.B., Chu K.H., 2006. Characteristics of dye adsorption by pretreated pine bark adsorbents. Int. J. Envir. Studies 63(1), 59-66.
- [15] Ponnusami V., Vikram S., Srivastava S.N., 2008. Guava (Psidium guajava) leaf powder: Novel adsorbent for removal of methylene blue from aqueous solutions. Journal of Hazardous Materials 152, 276-26.
- [16] Bhattacharyya K.G., Sharma A., 2005. Kinetics and thermodynamics of methylene blue adsorption on Neem (Azadirachta indica). Dyes and Pigments 65, 51-59.
- [17] Singh D.K., Srivastava B., 1999. Removal of basic dyes from aqueous solutions by chemically treated Psidium guyava leaves. Indian J. Environ. Health 41(4), 333-345.
- [18] Han R., Zou W., Yu W., Cheng S., Wang Y., J. Shi, 2007. Biosorption of methylene blue from aqueous solution by fallen phoenix tree’s leaves. J. Hazard. Mater. 141, 156-162.
- [19] Bhattacharyya K., Sarma A., 2003. Adsorption characteristics of the dye, Brilliant Green, on Neem leaf powder. Dyes and Pigments 57, 211-222.
- [20] Sarma J., Sarma A., Bhattacharyya K.G., 2008. Biosorption of Commercial Dyes on Azadirachta indica Leaf Powder: A Case Study with a Basic Dye Rhodamine B. Ind. Eng. Chem. Res. 47(15), 5433-5440.
- [21] Bhattacharyya K.G., Sharma A., 2004. Azadirachta indica leaf powder as an effective biosorbent for dyes: a case study with aqueous Congo Red solutions. Journal of Environmental Management 71, 217-229.
- [22] Helmy A.K., Ferreiro E.A., de Bessetti S.G., Peinemann N., 1998. Surface areas of kaolin, α-Fe2O3 and hydroxy-Al montmorillonite. Colloid Polym. Sci. 276, 539-543.
- [23] Garbarini D.R., Lion L.W., 1986. Influence of the nature of soil organics on the sorption of toluene and trichloroethylene. Environ Sci. Technol. 20, 1263-1269.
- [24] Chefetz B., Deshmukn A.P., Hatcher P.G., Guthrie E.A., 2000. Pyrene sorption by natural organic matter. Environ. Sci. Technol. 34(14), 2925-2930.
- [25] Ziółkowska D., Shyichuk A., Karwasz I., Witkowska M., 2009. Adsorption of cationic and anionic dyes onto commercial kaolin. Ads. Sci. Tech. 27(2), 205-214.
- [26] Duchemin B.J.-C.Z., Newman R., Staiger M.P., 2007. Phase transformations In microcrystalline cellulose due to partial dissolution. Cellulose 14, 311.
Identyfikator YADDA
bwmeta1.element.baztech-article-BATA-0011-0036