PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of benzene moiety fused with macrocyclic ring on the proton affinity of crown ethers studied in MS/MS experiment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we address the question how the presence of an aromatic moiety affects the proton affinity of crown ethers. In order to compare the proton affinities of crown ethers studied (M), we compared the abundances of protonated crown ethers ([M + H]+ ions) with the abundance of the ion [NH2-B15C5 + H]+ (formally also protonated crown ether). Both [M + H]+ and [NH2-B15C5 + H]+ were formed as a result of decomposition of [NH2-B15C5 + H + M]+. The presence of a benzene moiety fused with a macrocyclic ring strongly decreases the ratio [M + H]+/[NH2-B15C5 + H]+. Thus, the higher ring strain caused by the benzene moiety leads to a substantial lowering of the proton affinity of crown ethers. It is also suggested that for protonated benzocrown ethers the ring strain is partly compensated by the proton-đ interaction. The presence of an NO2 group decreases the electron density on the aromatic ring and, consequently, the proton-đ interaction is suppressed. As expected, the proton affinity of benzo-crown ethers increases with increasing size of their cavity since the ring strain is lower for larger molecules. An unexpectedly high proton affinity of dicyclohexano-18-crown-6 (DC18C6) has been observed.
Słowa kluczowe
Rocznik
Tom
Strony
61--68
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
autor
Bibliografia
  • [1] Gokel G.W., Leevy W.M., Weber M.E., 2004. Crown Ethers: Sensors for Ions and Molecular Scaffolds for Materials and Biological Models. Chemical Review 104, 2723-2750.
  • [2] Colton R., Mitchell S., Traeger J.C., 1995. Interactions of some crown ethers, cyclam and its tetrathia analogue with alkali, alkali earth and other metal ions: an electrospray mass spectrometric study. Inorganica Chimica Acta 231, 87-93.
  • [3] Anderson J.D., Paulsen E.S., Dearden D.V., 2003. Alkali metal binding energies of dibenzo-18-crown-6: experimental and computational results. International Journal Mass Spectrometry 227, 63-76.
  • [4] Bartoli S., de Nicola G., Roelens S., 2003. Binding of tetramethylammonium to polyether side-chained aromatic hosts. Evaluation of the binding contribution from ether oxygen donors. Journal of Organic Chemistry 68, 8149-8156.
  • [5] Sherman C.L., Brodbelt J.S., Marchand A.P., Poola B., 2005. Electrospray ionization mass spectrometric detection of self-assembly of a crown ether complex directed by π-stacking interactions. Journal of the American Society for Mass. Spectrometry 16, 1162-1171.
  • [6] Liou C.-C., Brodbelt J.S., 1992. Comparison of gas-phase proton and ammonium ion affinities of crown ethers and related acyclic analogs. Journal of the American Chemical Society 114, 6761-6764.
  • [7] Wasada H., Tsutsui Y., Yamabe S., 1996. Ab initio study of proton affinities of three crown ethers. Journal of Physical Chemistry 100, 7367-7371.
  • [8] Julian R.R., Beauchamp J.L., 2002. The unusually high proton affinity of aza-18-crown-6 ether: implications for the molecular recognition of lysine in peptides by lariat crown ethers. Journal of the American Society for Mass. Spectrometry 13, 493-498.
  • [9] Lau Y.K., Kebarle P., 1976. Substituent effects on the intrinsic basicity of benzene: proton affinities of substituted benzenes. Journal of the American Chemical Society 98, 7452-7453.
  • [10] Deakyne C.A., 2003. Proton affinities and gas-phase basicities: theoretical methods and structural effects. International Journal Mass Spectrometry 227, 601-616.
  • [11] McLuckey S.A., Cameron D., Cooks R.G., 1981. Proton affinities from dissociations of proton-bound dimers. Journal of the American Chemical Society 103, 1313-1317.
  • [12] Cooks R.G., Wong P.S.H., 1998. Kinetic method of making thermochemical determinations: advances and applications. Accounts of Chemical Research 31, 379-386.
  • [13] Armentano D., de Munno G., Di Donna L., Sindona G., Giorgi G., Salvini L., 2004. Self-assembling of cytosine nucleoside into triply-bound dimers in acid media. A comprehensive evaluation of proton-bound pyrimidine nucleosides by electrospray tandem mass spectrometry, X-rays diffractometry, and theoretical calculations. Journal of the American Society for Mass. Spectrometry 15, 268-279.
  • [14] Compagnon I., Dugourd P., 2007. Energy-dependent kinetic method: application to the multicompetitive fragmentation pathways of protonated peptides. Journal of Physical Chemistry A 111, 10635-10639.
  • [15] Schäfer M., 2003. Supramolecular crown ether adducts in the gas phase: from molecular recognition of amines to the covalent coupling of host/guest molecules. Angewandte Chemie International Edition 42, 1896-1899.
  • [16] Williamson B.L., Creaser C.S., 1999. Noncovalent inclusion complexes of protonated amines with crown ethers. International Journal Mass Spectrometry 188, 53-61.
  • [17] Daniel B.A., Martin J.M.L., de Proft F., Geerlings P., 2007. The protonation site of aniline revisited: A 'torture test' for electron correlation methods. ACS Symposium Series 958, 183-192.
  • [18] Russo N., Toscano M., Grand T., Mineva A., 2000. Proton affinity and protonation sites of aniline. Energetic behavior and density functional reactivity indices. Journal of Physical Chemistry A 104, 4017-4021.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BATA-0011-0035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.