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Abstract
A model of particle-particle interaction for bed sediment-laden flows, based on impulse
equations, is presented. The model is applicable to dense flows in which particle motion is
dominated by collisions. The model takes into account the possibility of sliding during the
collision process. However, particle rotation is not considered in this model. The governing
equations do not incorporate dimension of angular momentum. To verify this model, calcu-
lation of post-collision velocities was performed for several different collision simulations.
The term of particle-particle interaction is implemented into a general Lagrangian model
of trajectory of a sediment grain in a fluid flow. This general Lagrangian model is written
according to Newton’s second law; the rate of change of momentum of a particle is balanced
against the surface and body forces.
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Notation

D – particle size (diameter),
e – coefficient of restitution,
f – coefficient of friction,
Fa – added mass force,
Fb – Basset force,
Fd – drag force,
Fg – Archimedes force,
Fl – lift force,
Fpc – force exerted on saltating particle by another particle during

collision,
g – gravitational acceleration,
H – water depth,
J – impulsive force exerted on the particle,
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m – mass,
n – unit normal vector directed from particle 1 to 2 at the moment

of contact,
n · V – dot product of vectors n and V,
tmf t – the mean free time,
tup, tdw – mean free time when particle is moving upward, and down-

ward,
V0,V – relative velocities between particles before and after collision,
v – particle mean velocity.

α – collision angle,
Θin – incidence (impact) angles,
Θout – takeoff angle,
ρ – density of fluid (water),
ρs – density of sediment,
τ – shear stress tensor,
τc – critical shear stress.
ν – kinematic viscosity,

Subscripts

f – fluid phase,
mf t – mean free time,
n – normal component,
s – sediment,
t – tangential component,
1, 2 – refer to the velocity of two particles.

Superscript

0 – values before collision.

1. Introduction

Bedload sediment can be transported in several ways. A grain begins to move by
rolling over the surface of the bed, but with a slight increase in boundary shear
stress, this grain hops up from the bed and follows a ballistic-like trajectory. This
latter motion is called saltation, and it is considered to be the dominant mode of
bed-load transport (Sekine and Kikkawa 1992). Bagnold (1956) described saltation
as the unsuspended transport of particles over a granular bed by a fluid flow, in
the form of consecutive hops within the near-bed region. It is governed mainly
by the action of hydrodynamic forces that carry the particles through flow, the
downward pull gravity and the collision of the particles with the bed, which transfer
their streamwise momentum into upward momentum, thus sustaining the saltation
motion.
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The behavior of discrete particles (sand grains) in a near-bed region of turbulent
flows is considered under equilibrium conditions, i.e. particles of sand grains are
carried by the flow without net erosion and deposition. This behaviour results in
a constant concentration of particles in time, i.e. concentration depends only on
distance from the bed. The particle trajectory in turbulent flow in an open channel
depends largely on the concentration of particles and their sizes. At great particle
concentration there is interaction between the particles through collisions, and at
relatively large sand particle sizes the resulting force is significant in the balance
of all forces exerted on the particle.

A number of researchers have worked on modelling of grain saltation in water,
e.g. Van Rijn (1987) and (1990), Wiberg and Smith (1985) and (1989), Sekine
and Kikkawa (1992), Nino and Garcia (1996). Some of these studies have been
concerned with the saltation of gravel and others the saltation of sand. All these
models are based on the Lagrangian equation governing particle motion and on
deterministic or stochastic approaches for estimating the initial conditions. This
equation is written according to Newton’s second law, i.e. the rate of change of
momentum of a particle is balanced against the surface and body forces acting
on it. All forces exerted on the moving particle in turbulent flows in the vicinity
of the bed are steady-state drag forces, pressure gradient and buoyancy forces,
unsteady forces (virtual mass and Basset forces), lift forces (Saffman and Magnus
forces) and some body forces. So far, the force responsible for particle-particle
interactions – Fpc, which is very important, especially in the dense flow – has not
been taken into account. There is no doubt that in the vicinity of the bed, particle
motion is controlled by collision; therefore this force should be taken into account.
Particle-particle interaction (collision) can be neglected only in dilute flows, when
the concentration is less than 10−3, i.e. in the one- or two-way coupling regimes
(Elghobashi 1994). The dense flow, belonging to a four-way coupling regime, is
one in which particle motion is controlled by collisions.

Herein, a model of particle–particle interaction is presented which is based on
the physically fundamental principle of the impulse equation, for particles before
and after collisions. It allows for constructing a new force responsible for collision
between particles as well as for formulation of a new initial condition built on
well-defined principles related to not only the geometry of particle-particle interac-
tion but also on the principles of physics of particle collisions. It is shown how to
adopt the model to get conditions at which the saltation of sediment particles can be
a continuous process (Lee et al 2000). In this study only simple binary collisions are
considered, along with collisions that take place in a very short time, in absence of
any external force between two particles, i.e. the hard sphere model. The particles
are assumed to be uniform both in shape and size. To adopt the collision model to
describe the saltation movement of a single grain moving within the bedload, the
mean free time of a particle is considered.
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2. Mean Free Time of Discrete Particles in Water Flows

A particle trajectory is considered in a steady and uniform (two-dimensional) flow
under the equilibrium condition, i.e. the same amount of sediment is eroded as
deposited. This results in a constant concentration of particles in time, i.e. con-
centration depends solely on distance from the bed. Visualizations of the particle
motion in the near-bed region showed that a particle is picked up from the bed, lifts
away from the bed through some kind of ejection events, and is then deposited back
to the bed. During this motion, the particle collides with other particles losing some
energy, which modifies the particle trajectory. The average time between collisions
with other particles is called the mean free time, and the average distance between
collisions is the mean free path. The relation between these two mean quantities
is considered in statistical physics (see i.e. Reif 1967). We are limited here to
calculating the mean free time only to an approximate degree. Let us consider
two particles, particle 1 and 2 approaching each other with relative velocity V,
in the vicinity of the bed where sediment particles are in equilibrium. Based on
simple geometrical examination it is possible to show that the collision occurs if
the following relationship is fulfilled

πd2
(∣∣∣∣V∣∣∣∣ tmf t

)
n = 1, (1)

where d is the diameter of spherical particle (πd2 is the effective cross section for
collision),

∣∣∣∣V∣∣∣∣ is the absolute value of relative velocity particles, tmf t is the mean
free time and n is the number of particles per unit of fluid volume (concentration).
Then, it is easy to calculate the mean free time from Eq. (1).

tmf t =
1

n π d2
∣∣∣∣V∣∣∣∣ . (2)

The mean free time is small when the concentration and the size of particles
are large, likewise when the average relative velocity of particles is high because
then collisions may occur more frequently at the same concentration of particles.

3. Model of Particle-Particle Interaction

The movement of sand grains in the bed vicinity is controlled by collisions with
other moving grains or with grains comprising the bed. During the collision process
the force is very large but acts in a rather short time, therefore it is difficult to control.
It is much easier to control the product of force and time of collision by applying
the impulse force as the measure of change of momentum. This approach is used
in this paper.

The flow in which particle motion is controlled by collisions is called dense
flow. In this kind of flow, the ratio of momentum response time of particle – tr to
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Fig. 1. Particle-particle collision. Spherical particles 1 and 2 with masses m1 and m2 at the
moment of collision; n and t are unit orthogonal vectors located at the point of contact; v01

and v02 the initial velocities before collision

the mean free time between collisions – tmf t should exceed unity, i.e., tr /tmf t > 1.
The momentum response time is the time required for the particle released from the
rest to achieve 63% of the free stream velocity (Crowe et al 1998). In other words,
the particle has no time to respond to fluid dynamic forces before the next collision
occurs. In further course, it will be assumed that particles of sand have spherical
shape and constitute the disperse phase, i.e., particles are not connected. Hence it
is possible to consider only simple binary collisions, not multiple collisions.

3.1. Equations for Impulse Force

It is assumed that the particles are rigid spheres and all the collisions take place in
a very short time; hence all external forces can be neglected, and impulse equations
are considered in place of momentum equations. Where particles are assumed to
be rigid spheres, the impulse equations (without angular momentum) are given as
(see Fig. 1):

m1(v1−v0
1) = J; m2(v2−v0

2) = −J (3)

where J is the impulsive force exerted on particle 1, the force −J acts on particle
2 as the reaction force. The subscripts 1 and 2 refer to the two particles and the
superscript 0 denotes the values before collision. The following assumptions are
made:

1. Particle deformation is neglected.

2. The friction on sliding particles obeys Coulomb’s friction law.

3. Particles are hard (rigid) spheres.
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4. The angular momentum of particles is neglected.

The relative velocity vectors between particles before and after collision are
defined as

V0= v0
1−v0

2; V = v1−v2. (4)

The relationship between the pre and post-collisional velocities is obtained using
the coefficient of restitution. For spherical elements the restitution coefficient e is
defined as the ratio of the pre-collisional and post-collisional velocities, i.e.:

n · V = −e
(
n · V0

)
, (5)

where n · V is dot product of vectors, n is the unit normal vector from particle 1
to particle 2 at the point of contact, V0 and V are the relative velocities between
particles before and after collision.

It is easy to obtain the relationship for post-collision velocities from Eqs. (3)–(5):

V = V0 +

[
(m1 + m2)

m1m2

]
J. (6)

The normal component of the impulsive force, Jn exerted on particle 1 is given
as

Jn = −

[
m1m2

(m1 + m2)

]
(1 + e)(n · V0). (7)

Assuming that the particles slide during the collision process, then the tangential
component of the impulsive force appears and from Coulomb’s law for friction, is
equal to

Jt = f Jn, (8)

where f is the friction coefficient.
The absolute value of impulse force is

J =
√(

J2
n + J2

t

)
= Jn

√(
1 + f 2). (9)

Note again that all above equations are developed on the basis of two impulsive
force equations without impulsive torque equations. This means that the rotations
of colliding particles are not taken into account.

3.1.1. Examples of Calculation of the Impulsive Force in the Collision of Particles

The main aim of these calculations is to show the influence of the restitution coef-
ficient as well as the friction force between two colliding particles on the impulsive
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force exerted on particle 1 by particle 2. The collisions are performed for two
identical, spherical particles: particle 1 is entrained by flow at the angle equal to
27 degrees, a while the falling particle (particle 2) travels downwards vertically, i.e.
the particles move with pre-collisional velocities v01 = (0.89, 0.45) and v02 = (0,−1).
These particles can collide at a contact point ranging from 0 to 180 degrees. This
location of the contact point is defined by the angle α between a unit vector n
directed from particle 1 to particle 2 and the horizontal x-axis (Fig. 1).

The easiest case is related to collisions without shear force ( f = 0) between
particles, i.e. impact without any slide between particles during the collision process.
In this case the normal component of the impulsive force exerted on particle 1 is
simplified to the form

Jn = −

(m
2

)
(1 + e)

(
n · V0

)
. (10)

It is easy to see the role of the restitution coefficient, which is always less than
one and shows how the impulsive force is reduced by the collision. To show the
role of friction in the process of collision, collisions between particles with and
without friction were considered and results are shown in Fig. 2.

Fig. 2. The components of the total impulsive force for collisions of two particles with
restitution coefficient e = 1, and without friction force, as a function of different contact
angles (Jn,x , Jn,y), and for collision with friction force ( f = 0.2) (J x, J y). For both cases
velocities before collision are: v01 = (0.89, 0.45), v02 = (0,−1). Note on the units: if velocity
is expressed in m/s and mass in kg, then the impulse force is expressed in Ns, but if velocity
is expressed in mm/s and mass in grams, then the impulse force is expressed in 10−6 Ns

The role of the tangential component of the impulsive force in the process
of collision is shown by comparison of the total impulsive force, with and without
friction, during the collision of two particles (Fig. 2). The forces acting on spherical
particles during their collision depend on the angle of collision. The components
of these forces for collision without friction force (Jn x, Jn y), and with friction
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(J x, J y) are shown in Figure 2 as a function of collision angle. The maximum for
impulsive forces Jn between particles appears at α = 58.5◦ (this is the case when
vectors V0 and n are parallel to each other). It is clear that for α = 90◦ the horizontal
component of impulsive force Jn,x changes its sign from negative to positive.

3.2. Equations for Velocities

To verify the model, calculations of post-collision velocities for different angles
of collisions for both particles are performed. Substituting the components of the
impulse force (Eqs. (7) and (8)) into impulse equations (3) gives the two formulae
for post-collisional velocities, as

v1= v0
1 − (n − f t)

(
nV0
)
(1 + e)

m2

(m1 + m2)
, (11)

v2= v0
2 + (n − f t)

(
nV0
)
(1 + e)

m1

(m1 + m2)
, (12)

where v1 and v2 are post-collision velocity vectors of particles 1 and 2, respectively.

3.2.1. Post-collisional Velocities in the Case of Particle-Particle Interaction

To show how the model works, the post-collision velocities of two spherical particles
colliding at different contact (hitting) points are calculated. Particles with the same
mass are moving with pre-collision velocities v01 = (0.89, 0.45), v02 = (0,−1) and
they collide with friction force as well as without friction force. The first particle
represents the entrained particle with an ejection angle equal to 27 degrees, while the
second particle is the falling one. Both particles collide at different collision points
defined by angle α (see Fig. 1). Figure 3 shows the post-collision velocities of two
particles after perfect collisions without friction ( f = 0) and restitution coefficient
e = 1, and Figure 4 shows the post-collision velocities with friction and restitution
coefficient e = 0.6.

Figure 3 displays the resulting velocities after perfect collision, i.e. collision in
which momentum is preserved. It is easy to see the perfect momentum exchange
between the components of velocities. For α = 0◦ the whole x-momentum of particle
1 before collision is transferred to particle 2. Particle 1 changes its horizontal
velocity from negative to positive at the hitting angle ca 58.5o and it reaches its
maximum at α = 117◦. It moves vertically in the negative direction for hitting angles
in the range of (20o, 127◦). Particle 2 moves in the positive x-direction for collision
angles α ∈ (0◦, 90◦), but at 90◦ it changes its sense to the negative one.

As an example, Figure 4 displays post-collision velocities after the collision
defined by initial pre-collision velocities v01 = (0.89, 0.45), v02 = (0,−1), the restitu-
tion coefficient e = 0.6 and friction coefficient f = 0.2. Now, at α = 0◦ the whole
x-momentum of particle 1 prior to the collision is transferred to both particles. This
is the effect of the occurrence of friction. For all other collision angles, the initial,
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Fig. 3. Components of post-collision velocities for both particles after perfect collision
(e = 1 and f = 0) and for initial velocities (before collision) v01 = (0.89, 0.45), v02 = (0,−1).
(V1 x,V1 y) and (V2 x,V2 y) are velocities of particles 1 and 2, respectively. Note on units:
post-collision velocities have the same units as the initial velocities (usually they are mm/s

or cm/s)

Fig. 4. Components of the post-collision velocities for both particles for f = 0.2 and e = 0.6
and for initial velocities (before collision) v01 = (0.89, 0.45), v02 = (0,−1). (V1 x,V1 y) and
(V2 x,V2 y) are velocities of particles 1 and 2, respectively. For velocity units see Figure 3
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total x- and y-momentum are divided between the two particles depending on the
angle of collision. The x-component of velocity for particle 1 is positive for almost
all collision angles, and the maximum is reached at the same angle as for the perfect
collision α = 117◦. Particle 2 moves in the positive direction for the collision angles
α ∈ (0◦, 80◦), which means less than in the case of perfect collision.

4. Collision at the Bed

4.1. Basic Definitions

Particle-bed interaction is defined by the particle collision angle, the particles’ ve-
locities before collision, the properties of the particle and bed materials, the particle
shape, and the roughness of the bed. The collision angle is determined by the parti-
cle trajectory and the geometry of the bed. The restitution and friction coefficients
depend on the properties of the particle and bed materials. The roughness of the
bed is represented by the height of bed elements interferred with the flow and it is
defined by the Nikuradse concept of logarithmic velocity profile. There are a few
approaches to modelling particle-bed collision, see for example Lee et al (2006),
Nino and Garcia (1998), Lukerchenko et al (2006).

Here, it is assumed that uniformly packed spheres form the bed, as shown in
Figure 5 by grey spheres equal in size to transported particles. The bed is not able
to erode, therefore it is assumed that the mass of the spheres which constitute the
bed are much heavier, say 500 times the mass of the flowing particles. Thus, the
post-collision velocity of bed particles is negligibly small and can be omitted from
our considerations. For example, if the impact velocity is 1 cm/s, the velocity of
the bed particle will be 0.05 mm/s at the most. Of course, it is possible to assume
much heavier particles constituting the bed.

Consider a case where particle 1 is falling down with velocity v0
1 and striking

particle 2 which is located on the bed, i.e. v0
2 = (0, 0). If the bed consists of

uniformly packed spherical particles, the flowing particle is not able to strike the
bed particle at collision angle smaller than 60 nor greater than 120 degrees due
to the proximity of neighboring particles (see dark grey spheres in Fig. 5). The
possible, maximum range of the collision angle is dependent on the impact velocity
vector and the geometry of the particle, for a spherical particle, this is equal to (60o,
120o) (see Fig. 5). Definitions of incidence and other angles are given in Figure 6.

When the impact (incidence) velocity vector is inclined to the horizontal axis at
angles smaller than 30o, then it is easy to show that the minimum collision angle
varies linearly with respect to the incidence angle, and maximum collision angles
can be calculated from the following formula (Rowiński and Czernuszenko 1999)
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Fig. 5. The largest range for collision angles between two extreme locations of falling down
particle (the white spheres) and the bed-particle (the light grey sphere) is (60◦, 120◦) for
the incidence angle θin from (30◦, 90◦). If θin is from the range of (0◦, 30◦), the range of

possible collision angle is much less

tan (αmax − 90◦) =
a
√

1 + a2 +

√
a
(
−a − 2

√
1 + a2

)
+ a2

a − a
√

a
(
−a − 2

√
1 + a2

)
+
√

1 + a2
, (13)

where a = − tan(θin) and 0 < θin < 30.
All ranges of the collision angle as a function of impact angles are displayed

in Fig. 7 for the perfect collision. All angles are in degrees.

4.2. The Splash Function

The main features of particle-wall interaction allow us to construct the initial con-
dition for particle collision at the bed in the case of continuous saltation process.
Below is a proposed procedure that can be used to formulate the initial condition
for modeling of saltating sediment particles in bed-sediment laden flows.

Let us assume that particle 1 approaches any bed particle at the incidence
angle. It is not possible to predict the collision angle, therefore a stochastic model
proposed by Nino and Garcia (1994) is used to determine the probability distribution
of the collision angle α. A conditional probability density function of the collision
angle for a given incidence angle Θin − p(α|Θin) is assumed to be uniform, which
is equivalent to assuming that the particle considered has a uniform probability
of being located anywhere in the bed. Knowing the incidence angle, the range of
collision angles is determined from Figure 7. Next, the collision angle is determined
with the use of a random number generator. Having known the collision angle, we
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Fig. 6. Collision angles and the coordinate system in the case of simple collision of flowing
particle with one spherical bed particle (the light grey sphere), where α is angle of collision,
Θb is angle between horizontal and hypothetical repulsion plane, Θr is angle of response
i.e. the angle between the hypothetical repulsion plane and takeoff velocity vector, Θin is
the incidence (impact) angle of flowing particle, i.e. an angle between x-axis and velocity
vector V 0

1 , (0◦ < Θin < 90◦), Θout = angle of takeoff, i.e. an angle between x-axis and velocity
vector V1, Θout = Θb + Θr and two velocities: V 0

1 , V1 are velocity vectors before and after
collision, respectively

Fig. 7. Maximum and minimum collision angles as a function of the incidence angles
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Fig. 8. Post-collision particle velocity in the case of a particle striking a channel bed formed
of very heavy particles. The collision takes place at the impact velocity (0.707,−0.707), two
different restitution coefficients (e = 1, e = 0.4) and two friction coefficients ( f = 0, f = 0.6).
Note on units: post-collision velocities have the same units as the initial velocities (usually

they are mm/s or cm/s)

calculate the rebound velocity and define the initial condition, i.e. initial velocity
of particle for the next hop.

4.3. Conditions for the Continuous Saltation

To keep saltation as a continuous process, the post-collision velocity should be
positive and should exceed the velocity entrainment limit. Because the velocity limit
is unknown, it was assumed that the velocity is equal to any small positive number.
The post-collision velocity depends on the friction and restitution coefficients and is
displayed in Figure 8 for the given incidence angles. This figure presents the results
of calculations of post-collision velocities based on Eqs. (11) and (12) as a function
of the collision angle. The results of calculations of the post-collision velocities
of particle 1, falling downwards with velocity v0

1 = (0.707,−0.707), striking the
bed particle without friction ( f = 0) and with the friction ( f = 0.6) and with two
restitution coefficients (e = 1 and e = 0.4), are presented in Figure 8.

One can observe the role of both coefficients in calculations of the possible
range of collision angles at which continuous saltation occurs. This range depends
on the restitution and friction coefficients. One can read from Figure 8 that for
perfect collision (e = 1, f = 0) the range is (70◦, 110◦), for case (e = 1, f = 0.6)
the range is (75◦, 95◦) and for case (e = 0.4, f = 0) the range is (80◦, 93◦). It is
apparent that even for perfect collision, the range of collision angles is reduced in
comparison with the theoretical one, i.e. (60◦, 120◦).

The plot of post-collision velocities vs. collision angles is also a function of
the incidence angle of the sediment particle. Figure 9 shows the role of the inci-
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Fig. 9. Post-collision particle velocity vs. collision angle for a particle striking the channel
bed. The bed is formed by particles much heavier than flowing particles. All calculations
were made for perfect collision (e = 1, f = 0) and for the three impact velocities: (0.707,
−0.707), (0,866, −0.5) and (0.984, −0.173), i.e. three incidence angles: 45◦, 30◦ and 10◦.

For velocity units see Figure 8

dence angle in calculations of the post-collision velocity vs collision angles. It also
shows the role of the incidence angle in calculations of the possible range of the
collision angle at which continuous saltation could occur. This range depends on
the incidence angle, and from Figure 9 one can read that for the perfect collision
(e = 1, f = 0) and the impact velocity (0.707, −0.707) (incidence angle = 45◦) the
range is (70◦, 110◦). Similarly, one can read that for the incidence angle 30◦ the
range is (77◦, 118◦), and for the incidence angle 10◦ the range is (87o, 128◦).
Summarizing the results of the above calculations, one can say that if the incidence
angle varies from 45 to 10 degrees, the range of possible collision angles is reduced
by almost 20 degrees.

It is interesting to note that the above-discussed process of perfect collision
agrees with typical results of the collision of two elastic balls, see Figure 9 for
three collision angles i.e. 45◦, 90◦ and 135◦. For two extreme collision angles,
one can observe that for 45◦ the post-collision velocity remains the same; but for
135◦ this velocity only changes its sign. For 90◦, only the vertical component of
post-collision velocity changes its sign.

The role of the incidence angle in calculations of the possible range of collision
angles at which continuous saltation could take place is depicted in Figure 10. Con-
tinuous saltation is possible only when the takeoff angle is positive. This condition
is equivalent to the above-mentioned condition, which is expressed in terms of
post-collision velocity. Figure 10 shows at which incidence and collision angles the
takeoff angle is a positive one, e.g. under which conditions (incidental and collision
angles) continuous saltation occurred.
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Fig. 10. The takeoff angle vs. the collision angle in degrees for different incidence angles
Θin (in legend Teta IN) for the case of perfect collision

4.4. Measurements of Particle Collision with the Bed

Nino and Garcia (1998) observed the saltation of sand (mean diameter of about
0.5 mm) in an open channel flow by using a high-speed video system. The typical
jump was about 8–12 particle diameters (D) in length with maximum heights of
about 1.3–1.8 D. The angles of incidence and takeoff, measured with respect to
a line parallel to the channel bed are not correlated and vary in ranges of (0◦, 45◦)
and (0◦, 80◦), respectively.

Nino et al (1994) used the same techniques to observe the saltation of natural
gravel particles (15 mm and 31 mm) in a steep, movable-bed channel. The mean
saltation length and height as functions of the ratio τ∗/τ∗c (dimensional shear stress/
dimensional critical shear stress) are about 5–7 particle diameters (D) and 1–2
D, respectively. It is worth noting that higher values are received for the smaller
particles, i.e. 15 mm. Results of the impact and takeoff angles are the same as
obtained by Nino and Garcia (1998), i.e. they are not correlated and vary in ranges
(0◦, 45◦) and (0◦, 80◦), respectively.

There is some controversy regarding the possibility of the continuous saltation
process (collision-rebound process), e.g. Abbott and Francis (1977) deny such a pos-
sibility, while Nino and Garcia (1998) try to prove that the collision-rebound process
is possible. The presented model for collisions of spherical hard particles gives us
conditions under which the saltation of sediment sphere may be a continuous pro-
cess. There is one reasonable condition for this, i.e. post-collision velocity should
be directed upwards and exceed the velocity entrainment limit. If it is assumed that
the velocity limit is equal to any small positive number or if we know this limit,
then for given the impact velocity based on:
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– Figures 8, one could read the positive sign of post-velocity components for the
range of the collision angle for the friction and restitution coefficients,

– Figure 9, one could read the positive sign of post-velocity components for the
range of the collision angle for chosen of the incidence angle,

– Figure 10, one could read the positive sign of the takeoff angle for the range of
the collision angle for the chosen of the incidence angle.

All these Figures along with the consequences arising from them are discussed
in detail in Section 4.2. Now, one could say that in order to keep saltation as a con-
tinuous process, the range of the collision angle should be narrowed in comparison
to the theoretical one discussed in Section 4.1.

5. A Theoretical Model for Saltating Grain in Water

The slow motion of a spherical particle in a fluid may be described by Newton’s
equation in the following form (Hinze 1975)

ms
dvs

dt
= Fg + Fd + Fl + Fm + Fa + Fb + Fpc, (14)

where:

ms – mass of the solid particle (sediment) in water flow,
vs – velocity of the particle (grain) along the bed in the water stream,
Fg – gravitation force or buoyancy force,
Fd – drag force acting on the particle in a uniform pressure field when

there is no acceleration the relative velocity between the particle and
the conveying fluid,

Fl – lift force acting on a particle due to particle rotation. The rotation
may be caused by a velocity gradient or may be imposed from
some other source. The Saffman lift force is due to the pressure
distribution developed on a particle due to the rotation induced by
a velocity gradient. The higher velocity on the top of the particle
gives rise to a low pressure, and the high pressure on the low velocity
side gives rise to a lift force,

Fm – the Magnus force is the lift developed due to rotation of the particle.
The lift is caused by a pressure difference between both sides of the
particle resulting from the velocity differential due to rotation. The
rotation may be caused by a source other that the velocity gradient,

Fa – force representing virtual or apparent mass effect. This force relates
to the force required to accelerate the surrounding fluid. This force
can be categorized as one of the unsteady forces. The other unsteady
force is the Basset force,



Model of Particle-Particle Interaction for Saltating Grains in Water 117

Fig. 11. Average impulsive force defined by Eq. 15 as functions of the friction coefficient
and the restitution coefficient of two identical 1 g particles for velocities before collision:

v01 = (0.89, 0.45), v02 = (0,−0.25) [m/s]

Fb – the Basset force accounts for the viscous effects due to acceleration.
The value of the Basset force depends on the acceleration history up
to the present time. This force is difficult to evaluate and is usually
negligible for slow water velocity,

Fpc – force exerted on a saltating particle from another particle during
collision.

Eq. (14) will be used as the model for the saltation motion of a sediment particle
in an open channel flow. There is no doubt that in the vicinity of the bed, particle
motion is controlled by collision; therefore the force responsible for particle-particle
interactions (Fpc) should be taken into account. The force Fpc can be described in
the following way.

If the location of collision contact and the velocities of both particles before
collision are known, there is no problem to define the force responsible for collision.
Usually, the location of contact point is not known, even it is impossible to predict
it. Therefore, it is assumed that the location of the contact point is a random function
with a uniform probability distribution in the range of angles from 0 to π; thus the
mean impulsive force can be calculated for the chosen velocities as

J =
1
π

π∫
0

(Jx, Jy) da =

1π
π∫

0

Jx da,
1
π

π∫
0

Jy da

 . (15)

The averaged impulsive force Eq. (15) depends on friction and restitution coef-
ficients, as depicted in Fig. 11.

The average impulsive force between two identical particles, defined by Eqs.
(15), (9) and (7), varies linearly with the mass of the particle, as does the restitution
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coefficient. If it is assumed that there are n collisions during the upward movement
of a particle and the same number in the opposite direction, then the mean force
acting on the chosen particle during the whole hop of the particle (tup + tdw), takes
the form

Fpc =


nJ
tup

for t ∈ tup,

−nJ
tdw

for t ∈ tdw,

(16)

where τup and τdw are the mean times when the particle is moving upward and
downward, respectively, and it is assumed that they are equal to each other.

6. Summary and Conclusions

The model of particle-particle interaction was developed on the basis of impulse
equations for hard spheres and the relationship between the pre- and post-collision
velocities. This takes into account the friction force and loss of energy during
collisions, after assuming a binary two-dimensional mechanism of interaction for
bed-sediment laden-flows. The force exerted on a saltating particle from another
particle during collision is also developed for Lagrange equations for the motion
of saltating grains in water. Some additional conditions are developed for particle
collisions at the bed, especially conditions for keeping saltation as a continuous pro-
cess. Numerical simulations of binary particle collisions confirmed that the obtained
post-collision velocities agree with our current knowledge on the collisions of two
hard, elastic balls. Further work is required to define more precisely the empirical
coefficients such as the restitution coefficient as well the friction coefficient between
particles in turbulent boundary layer flows. One can draw the following conclusions
from simulations:

1. The model of particle-particle interaction describes the impulsive force for the
given pre-collision velocities as a function of the angle of collision. The force
depends on the angle of collision, the friction and restitution coefficients. The
latter causes the decrease in the impulsive force exerted between particles. The
friction coefficient creates the tangential component of the impulsive force, i.e.
the component that is responsible for sliding between particles during the col-
lision process.

2. The post-collision velocities depend on the restitution coefficient, the friction
force and the angle of collision. Generally, the total momentum of particles is
conserved for perfect collisions for all collision angles. The restitution coefficient
attenuated the post-collision velocities, and the friction coefficient causes some
changes in maximum velocities as well as in their location.
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3. The model allows for formulating the correct boundary conditions in the case of
particle-wall interaction as a function of given incidental angles when uniformly
packed spheres constitute the bed. Furthermore, it allows us to keep saltation as
a continuous process for collision with different friction and restitution coeffi-
cients.

4. The takeoff angle of the post-collision velocity can be presented as the function
of two angles: impact and collision angle. Knowing this function, it is possible
to construct the boundary condition for a continuous saltation process.
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