PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Charging Phenomena at the Interface Between High-k Dielectrics and SiOx Interlayers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The transition regions of GdSiO/SiOx and HfO2/ SiOx interfaces have been studied with the high-k layers deposited on silicon substrates. The existence of transition regions was verified by medium energy ion scattering (MEIS) data and transmission electron microscopy (TEM). From measurements of thermally stimulated current (TSC), electron states were found in the transition region of the HfO2/SiOx structures, exhibiting instability attributed to the flexible structural molecular network expected to surround the trap volumes. The investigations were focused especially on whether the trap states belong to an agglomeration consisting of a single charge polarity or of a dipole constellation. We found that flat-band voltage shifts of MOS structures, that reach constant values for increasing oxide thickness, cannot be taken as unique evidence for the existence of dipole layers.
Słowa kluczowe
Rocznik
Tom
Strony
10--19
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
autor
autor
autor
autor
autor
autor
  • Chalmers University of Technology, Department of Microtechnology and Nanoscience, SE-412 96 Göteborg, Sweden, olof.engstrom@chalmers.se
Bibliografia
  • [1] O. Engström, B. Raeissi, S. Hall, O. Buiu, M. C. Lemme, H. D. B. Gottlob, P. K. Hurley, and K. Cherkaoui, “Navigation aids in the search for future high-k dielectrics: physical and electrical trends”, Solid-State Electron., vol. 51, iss. 4, pp. 622–626, 2007.
  • [2] B. Raeissi, J. Piscator, O. Engström, S. Hall, O. Buiu, M. C. Lemme, H. D. B. Gottlob, P. K. Hurley, K. Cherkaoui, and H. J. Osten, “High-k-oxide/silicon interfaces characterized by capacitance frequency spectroscopy”, Solid-State Electron., vol. 52, iss. 9, pp. 1274–1279, 2008.
  • [3] P. K. Hurley, K. Cherkaoui, E. O’Connor, M. C. Lemme, H. D. B. Gottlob, M. Schmidt, S. Hall, Y. Lu, O. Buiu, B. Raeissi, J. Piscator, O. Engström, and S. B. Newcomb, “Interface defects in HfO2, LaSiOx and Gd2O3 high-k-metal-gate structures on silicon”, J. Electrochem. Soc., vol. 155, no. 2, pp. G13–G20, 2008.
  • [4] M. A. Quevedo-Lopez, P. D. Kirsch, S. Krishnan, H. N. Alshareef, J. Barnett, H. R. Harris, A. Neugroschel, F. S. Aguirre-Tostado, B. E. Gnade, M. J. Kim, R. M. Wallace, and B. H. Lee, “Systematic gate stack optimization to maximize mobility with HfSiON EOT scaling”, in Proc. ESSDERC 2006 Conf., Montreux, Switzerland, 2006, pp. 113–116.
  • [5] G. Lucovsky, Y.Wu, H. Niimi, V.Misra, and J. C. Phillips, “Bonding constraints and defect formation at interfaces between crystalline silicon and advanced single layer composite gate dielectrics”, Appl. Phys. Lett., vol. 74, no. 14, pp. 2005–2007, 1999.
  • [6] G. Lucovsky, J. P. Maria, and J. C. Phillips, “Interfacial strain induced self-organization in semiconductor dielectric gate stacks. II. Strain relief at internal dielectric interfaces between SiO2 and alternative dielectrics”, J. Vac. Sci. Technol. B, vol. 22, iss. 4, pp. 2097–2104, 2004.
  • [7] G. Lucovsky and J. C. Phillips, “Defects and defect relaxation at internal interfaces between high-k transition metal and rare earth dielectrics and interfacial native oxides in metal oxide semiconductor (MOS) structures”, Thin Solid Films, vol. 486, iss. 1–2, pp. 200–204, 2005.
  • [8] F. Giustino, A. Bongiorna, and A. Pasquarello, “Equivalent thickness of thin oxide interlayer in gate insulator stacks on silicon”, Appl. Phys. Lett., vol. 86, iss. 19, pp. 192901-1--3, 2005.
  • [9] P. Broqvist and A. Pasquarello, “Band gaps and dielectric constants of amorphous hafnium silicates: a first principle calculation”, Appl. Phys. Lett., vol. 90, iss. 8, pp. 082907-1--3, 2007.
  • [10] G. Bersuker, C. S. Park, J. Barnett, P. S. Lysaght, P. D. Kirsch, C. D. Young, R. Choi, B. H. Lee, B. Foran, K. van Benthem, S. J. Pennycook, P. M. Lenahan, and J. T. Ryan, “The effect of interfacial layer properties on the performance of Hf-based gate stack devices”, J. Appl. Phys., vol. 100, p. 094108, 2006.
  • [11] J. T. Ryan, P. M. Lenahan, G. Bersuker, and P. Lysaght, “Electron spin resonance observations of oxygen deficient silicon atoms in the interfacial layer of hafnium oxide based metal-oxide-silicon structures”, Appl. Phys. Lett., vol. 90, p. 173513, 2007.
  • [12] B. Raeissi, Y. Y. Chen, J. Piscator, Z. H. Lai, and O. Engström, “Electron traps at HfO2/SiOx interfaces”, in Proc. ESSDERC 2008 Conf., Edinburgh, Scotland, 2008, pp. 130–133.
  • [13] K. Iwamoto, Y. Kamimuta, A. Ogawa, Y. Watanabe, S. Migita, W. Mizubayashi, Y. Morita, M. Takahashi, H. Ota, T. Nabatame, and A. Toriumi, “Experimental evidence for the flatband voltage shift of high-k metal-oxide-semiconductor devices due to the dipole formation at the high-k/SiO2 interface”, Appl. Phys. Lett., vol. 92, iss. 13, pp. 132907-1--3, 2008.
  • [14] K. Kita and A. Toriumi, “Origin of electric dipoles formed at highk/ SiO2 interface”, Appl. Phys. Lett., vol. 94, iss. 13, pp. 132902-1--3, 2009.
  • [15] K. Xiong, J. Robertson, M. C. Gibson, and S. J. Clark, “Defect energy levels in HfO2 high-dielectric constant gate oxide”, Appl. Phys. Lett., vol. 87, iss. 18, pp. 183505-1--3, 2005.
  • [16] J. L. Gavartin, D. Mu˜noz Ramo, A. L. Shluger, G. Bersuker, and B. H. Lee, “Negative oxygen vacancies in HfO2 as charge traps in high-k stacks”, Appl. Phys. Lett., vol. 89, iss. 8, pp. 082908-1--3, 2006.
  • [17] Y. P. Feng, A. T. Lim, and M. F. Li, ”Negative-U property of oxygen vacancy in cubic HfO2”, Appl. Phys. Lett., vol. 87, iss. 6, pp. 062105-1--3, 2005.
  • [18] H. D. B. Gottlob, M. Schmidt, A. Stefani, M. C. Lemme, H. Kurz, I. Z. Mitrovic, W. M. Davey, S. Hall, M. Werner, P. R. Chalker, K. Cherkaoui, P. K. Hurley, J. Piscator, O. Engström, and S. B. Newcomb, “Scaling potential and MOSFET integration of thermally stable Gd silicate dielectrics”, Microelectron. Eng., vol. 86, iss. 7–9, pp. 1642–1645, 2009.
  • [19] H. D. B. Gottlob, A. Stefani, M. Schmidt, M. C. Lemme, H. Kurz, I. Z. Mitrovic, M. Werner, W. M. Davey, S. Hall, P. R. Chalker, K. Cherkaoui, P. K. Hurley, J. Piscator, O. Engström, and S. B. Newcomb, “Gd silicate: a high-k dielectric compatible with high temperature annealing”, J. Vac. Sci. Technol. B, vol. 27, iss. 1, pp. 249–252, 2009.
  • [20] I. Z. Mitrovic and S. Hall, “Rare earth silicate formation – a route towards high-k for the 22 nm node and beyond”, J. Telecommun. Inform. Technol., no. 4, pp. 51–60, 2009.
  • [21] O. Engström and A. Alm, “Energy concepts of insulator-semiconductor interface traps”, J. Appl. Phys., vol. 54, no. 9, pp. 5240–5244, 1983.
  • [22] W. B. Fowler, J. K. Rudra, M. E. Zvanut, and F. J. Fiegl, “Hysteresis and Franck-Condon relaxation in insulator-semiconductor tunnelling”, Phys. Rev. B, vol. 41, no. 12, pp. 8313–8317, 1990.
  • [23] O. Engström and H. G. Grimmeiss, “Vibronic states of silicon dioxide interface traps”, Semicond. Sci. Technol., vol. 4, no. 12, pp. 1106–1115, 1989.
  • [24] O. Engström, T. Gutt, and H. M. Przewłocki, “Energy concepts involved in MOS characterization”, J. Telecommun. Inform. Technol., no. 2, pp. 86–91, 2007.
  • [25] M. Johansson, “Silicon device substrate and channel characteristics influenced by interface properties”, Ph.D. thesis, Chalmers University of Technology, G¨oteborg, Sweden, 2005.
  • [26] B. Raeissi, “Charge carrier traffic at interfaces in nanoelectronic structures”, Ph.D. thesis, Chalmers University of Technology, G¨oteborg, Sweden, 2010.
  • [27] M. Y. A. Yousif, M. Johansson, and O. Engström, “Extremely small hole capture cross sections in HfO2/HfxSiyOz/p-Si structures”, Appl. Phys. Lett., vol. 90, iss. 20, pp. 203506-1--3, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BATA-0008-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.