PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

History of Semiconductors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The history of semiconductors is presented beginning with the first documented observation of a semiconductor effect (Faraday), through the development of the first devices (point-contact rectifiers and transistors, early field-effect transistors) and the theory of semiconductors up to the contemporary devices (SOI and multigate devices).
Słowa kluczowe
Rocznik
Tom
Strony
3--9
Opis fizyczny
Bibliogr. 46 poz., rys.
Twórcy
autor
  • Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa st 75, 00-662 Warsaw, Poland, lukasiak@imio.pw.edu.pl
Bibliografia
  • [1] G. Busch, “Early history of the physics and chemistry of semiconductors – from doubts to fact in a hundred years”, Eur. J. Phys., vol. 10, no. 4, pp. 254–263, 1989.
  • [2] F. Laeri, F. Schüth, U. Simon, and M. Wark, Host-Guest-Systems Based on Nanoporous Crystals. Weinheim: Wiley, 2003, pp. 435–436.
  • [3] T. K. Sarkar, R. Mailloux, A. A. Oliner, M. Salazar-Palma, and D. L. Sengupta, The History of Wireless. Hoboken: Wiley, 2006.
  • [4] J. Orton, Semiconductors and the Information Revolution: Magic Crystals that Made IT Happen. Amsterdam: Academic Press/Elsevier, 2009, pp. 35–36
  • [5] W. Mönch, Semiconductor Surfaces and Interfaces. Berlin-Heidelberg: Springer, 2001.
  • [6] Z. A. Smith and K. D. Taylor, Renewable and Alternative Energy Sources: A Reference Handbook. Santa Barbara: ABC-CLIO Inc., 2008, p. 157.
  • [7] J. Orton, The Story of Semiconductors. Oxford: Oxford University Press, 2004, p. 359.
  • [8] J. Perlin, From Space to Earth: The Story of Solar Electricity. Cambridge: Harvard University Press, 2002, p. 17.
  • [9] M. Grundman, The Physics of Semiconductors. Berlin-Heidelberg: Springer, 2006.
  • [10] L. Hoddeson, E. Braun, J. Teichmann, and S. Weart, Out of the Crystal Maze: Chapters in the History of Solid State Physics. New York: Oxford University Press, 1992.
  • [11] B. Lojek, History of Semiconductor Engineering. Berlin-Heidelberg: Springer, 2007.
  • [12] P. K. Bondyopathyay, “Sir J. C. Bose’s diode detector received Marconi’s first transatlantic wireless signal of December 1901 (the “Italian navy coherer” scandal revisited)”, Proc. IEEE, vol. 86, no. 1, pp. 259–285, 1998.
  • [13] M. Riordan and L. Hoddeson, “The origins of the p-n junction”, IEEE Spectrum, vol. 34, no. 6, p. 46, 1997.
  • [14] J. Bardeen, “Solid state physics – 1947”, Solid State Technol., vol. 30, no. 12, pp. 69–71, 1987.
  • [15] I. M. Ross, “The invention of the transistor”, Proc. IEEE, vol. 86, no. 1, pp. 7–27, 1998.
  • [16] M. Riordan, L. Hoddeson, and C. Herring, “The invention of the transistor”, Rev. Mod. Phys., vol. 71, no. 2, pp. S336–S345, 1999.
  • [17] T. S. Perry, “Not just blue sky”, IEEE Spectrum, vol. 39, no. 6, pp. 33–37, 2002.
  • [18] J. A. Armstrong, “Solid state technology and the computer: 40 years later small is still beautiful”, Solid State Technol., vol. 30, no. 12, pp. 81–83, 1987.
  • [19] L. Esaki, “Discovery of the tunnel diode”, IEEE Trans. Electron Dev., vol. 23, no. 7, pp. 644–647, 1976.
  • [20] L. Berlin and H. Casey, Jr., “Robert Noyce and the tunnel diode”, IEEE Spectrum, vol. 42, no. 5, pp. 49–53, 2005.
  • [21] L. Esaki and R. Tsu, “Superlattice and negative conductivity in semiconductors”, IBM Res. Note, RC-2418, March 1969.
  • [22] L. Esaki and R. Tsu, “Superlattice and negative differential conductivity in semiconductors”, IBM J. Res. Develop., vol. 14, pp. 61–65, Jan. 1970.
  • [23] M. M. Atalla, E. Tannenbaum, and E. J. Scheibner, “Stabilization of silicon surfaces by thermally grown oxides”, Bell. Syst. Tech. J., vol. 38, no. 3, pp. 749–783, 1959.
  • [24] D. Kahng and M. M. Atalla, “Silicon-silicon dioxide field induced surface devices”, in Solid State Res. Conf., Pittsburgh, USA, 1960.
  • [25] S. R. Hofstein and F. P. Heiman, “Silicon insulated-gate field-effect transistor”, Proc. IEEE, vol. 51, no. 9, pp. 1190–1202, 1963.
  • [26] F. M. Wanlass and C. T. Sah, “Nanowatt logic using field-effect metal-oxide semiconductor triodes”, in Proc. Techn. Dig. IEEE 1963, Int. Solid-State Circ. Conf., Philadelphia, USA, 1963, pp. 32–33.
  • [27] W. S. Boyle and G. E. Smith, “The inception of charge-coupled devices”, IEEE Trans. Electron Dev., vol. 23, no. 7, pp. 661–663, 1976.
  • [28] R. E Kerwin, D. L. Klein, and J. C. Sarace, “Method for making MIS structures”, US Patent 3 475 234, filed March 27, 1967, issued Oct. 28, 1969.
  • [29] T. Mochizuki, K. Shibata, T. Inoue, K. Obuchi, and M. Kashiwogi, “A new gate material for MOS devices – molybdenum silicide (MoSi2)”, in Proc. ECS Conf., Atlanta, USA, 1977, vol. 72–2, pp. 331–332.
  • [30] K. C. Saraswat, F. Mohammedi, and J. D. Meindl, “WSi2 gate MOS devices”, in Proc. IEDM Tech. Dig., Washington, USA, 1979, pp. 462–464.
  • [31] J. R. Brews, W. Fichtner, E. H. Nicollian, and S. N. Sze, “Generalized guide for MOSFET miniaturization”, IEEE Electron Dev. Lett., vol. 1, no. 1, pp. 2–4, 1980.
  • [32] W. R. Hunter, T. C. Holloway, P. K. Chatterjee, and A. F. Tasch, “New edge-defined vertical-etch approaches for submicrometer MOSFET fabrication”, in Proc. IEDM Tech. Dig., Washington, USA, 1980, pp. 764–767.
  • [33] S. S. Wong, D. R. Bradbury, D. C. Chen, and K. Y. Chiu, “Elevated source/drain MOSFET”, in Proc. IEDM Tech. Dig., San Francisco, USA, 1984, pp. 634–637.
  • [34] T. Mochizuki and K. D. Wise, “An n-channel MOSFET with Schottky source and drain”, IEEE Electron Dev. Lett., vol. 5, no. 4, pp. 108–110, 1984.
  • [35] H. Tian, R. B. Hulfachor, J. J. Ellis-Monaghan, K. W. Kim, M. A. Littlejohn, J. R. Hauser, and N. A. Masnari, “An evaluation of super-steep-retrograde channel doping for deep-submicron MOSFT applications”, IEEE Trans. Electron Dev., vol. 41, no. 10, pp. 1880–1882, 1994.
  • [36] C.-T. Chuang, K. Bernstein, R. V. Joshi, R. Puri, K. Kim, E. J. Nowak, T. Ludwig, and I. Aller, “Focusing on planar device structures and strained silicon for handling silicon scaling issues in the deep sub-100 nm regime”, IEEE Circ. Dev. Mag., vol. 20, no. 1, pp. 6–19, 2004.
  • [37] J.-P. Collinge, Silicon-on-Insulator Technology: Materials to VLSI. Boston/Dordrecht/London: Kluwer, 2004.
  • [38] T. Skotnicki, J. A. Hutchby, T.-J. King, H.-S. P. Wong, and F. Boeuf, “The end of CMOS scaling”, IEEE Circ. Dev. Mag., vol. 21, no. 1, pp. 16–26, 2005.
  • [39] J.-P. Colinge, “Multiple-gate SOI MOSFETs”, Solid-State Electron., vol. 48, no. 6, pp. 897–905, 2004.
  • [40] E. E. Loebner, “Subhistories of the light emitting diode”, IEEE Trans. Electron Dev., vol. 23, no. 7, pp. 675–698, 1976.
  • [41] N. Holonyak, “The semiconductor laser: a thirty-five year perspective”, Proc. IEEE, vol. 85, no. 11, pp. 1678–1693, 1997.
  • [42] Z. I. Alferov, “Autobiography”, http://nobelprize.org/nobelprizes/physics/laureates/2000/alferov-autobio.html
  • [43] G. E. Moore, “Progress in digital integrated electronics”, in Proc. IEDM Tech. Dig., Washington, USA, 1975, p. 103.
  • [44] Hardware components, Intel processor history, http://www.interfacebus.com/intel-processor-types-release-date.html
  • [45] International Technology Roadmap for Semiconductors, 2008, http://www.itrs.net/Links/2008ITRS/home2008.htm
  • [46] The singularity is near, http://singularity.com/charts
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BATA-0008-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.