PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Microscopic Approach for THz Intersubband Challenges

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main candidate to be a practical and low cost high power THz source is the intersubband-based quantum cascade laser, which can have a tremendous impact in many practical applications, including last mile and indoor telecommunication systems. In this review we discuss current challenges for THz intersubband device development from a microscopic point of view. Next summarize the search for new mechanisms and structure designs that can lead to intersubband gain without population inversion. This is a very important topic of current research, since is both an extremely elegant phenomenon from the basic physics of view and crucial for effective lasing in the THz range. The reason is that scattering phenomena can lead to level broadenings of the same order of magnitude of the lasing transitions, making population inversion by carrier injection in upper lasing subbands extremely difficult. Previous work in the literature is compared and contrasted with a new scheme that may lead to high temperature lasing by engineering the nonequilibrium population inversion with a combination of band structure and many body effects mediated by a k-space filter.
Rocznik
Tom
Strony
118--123
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
  • Materials and Engineering Research Institute, Sheffiled Hallam University, S1 1WB, Sheffield, United Kingdom, M.Pereira@shu.ac.uk
Bibliografia
  • [1] S. Cherry, “Edholm’s law of bandwidth”, IEEE Spectr., vol. 41, pp. 58–59, 2004.
  • [2] M. Koch, “IN-door THz communications: a vision for 2020”, in Terahertz Frequency Detection and Identification of Materials and Objects, R. E. Miles et al., Eds. Nato Security Through Science Series. Berlin: Springer, 2007, pp. 325–338.
  • [3] J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser”, Science, vol. 264, no. 5158, pp. 553–556, 1994.
  • [4] R. K¨ohler, A. Tredicucci, F. Beltran, H. E. Beere, E. H. Linfield, A. Davies, D. A. Ritchie, R. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser”, Nature, vol. 417, no. 6885, pp. 156–159, 2002.
  • [5] S. Kumar, Q. Hu, and J. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design”, Appl. Phys. Lett., vol. 94, no. 13, pp. 131105-1–1331105-3, 2009.
  • [6] B. S. Williams, “Terahertz quantum-cascade lasers”, Nat. Phot., vol. 1, no. 9, pp. 517–525, 2007.
  • [7] A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population-inversion via quantum interference and in RB”, Phys. Rev. Lett., vol. 75, no. 8, pp. 1499–1502, 1995.
  • [8] A. Wacker, “Coexistence of gain and absorption”, Nat. Phys., vol. 3, no. 5, pp. 298–299, 2007.
  • [9] R. Terazzi, T. Gresch, M. Giovanni, N. Hoyler, F. Faist, and N. Sekine, “Bloch gain in quantum cascade laser”, Nat. Phys., vol. 3, no. 5, pp. 329–333, 2007.
  • [10] J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, M. S. Hybertsen, and A. Y. Cho, “Quantum cascade lasers without intersubband population inversion”, Phys. Rev. Lett., vol. 76, no. 3, pp. 411–415, 1996.
  • [11] G. Sun, A. Liu, and J. B. Khurgin, “Valence intersubband lasers with inverted light-hole effective mass”, Appl. Phys. Lett., vol. 72, no. 12, pp. 1481–1483, 1998.
  • [12] L. Friedman, G. Sun, and A. Soref, “SiGe/Si THz laser based on transitions between inverted mass light-hole and heavy-hole subbands”, Appl. Phys. Lett., vol. 78, no. 4, pp. 401–403, 2001.
  • [13] R. A. Soref and G. Sun, “Terahertz gain in a SiGe/Si quantum staircase utilizing the heavy-hole inverted effective mass”, Appl. Phys. Lett., vol. 79, no. 22, pp. 3639–3641, 2001.
  • [14] G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grutzmacher, and E. Muller, “Intersubband electroluminescence from silicon-based quantum cascade structures”, Science, vol. 290, no. 5500, p. 2277, 2000.
  • [15] L. Diehl, S. Mentese, E. M¨uller, D. Gr ¨utzmacher, H. Sigg, U. Gennser, I. Sagnes, Y. Campidelli, O. Kermarrec, D. Bensahel, and J. Faist, “Electroluminescence from strain-compensated Si0.2Ge0.8/Si quantum-cascade structures based on a boundto- continuum transition”, Appl. Phys. Lett., vol. 81, no. 25, pp. 4700–4702, 2002.
  • [16] R. Bates, S. A. Lynch, D. Paul, Z. Ikonic, R. W. Kelsall, P. Harrison, S. L. Liew, D. J. Norris, A. G. Cullis, W. R. Tribe, and D. D. Arnone, “Interwell intersubband electroluminescence from Si/SiGe quantum cascade emitters”, Appl. Phys. Lett., vol. 83, no. 20, pp. 4092–4094, 2003.
  • [17] D. J. Paul, “8-band k ・ p modeling of the quantum confined Stark effect in Ge quantum wells on Si substrates“, Phys. Rev. B, vol. 77, no. 15, pp. 155323-1–155323-7, 2008.
  • [18] M. F. Pereira Jr., “Intervalence transverse-electric mode terahertz lasing without population inversion”, Phys. Rev. B, vol. 78, no. 24, pp. 245305-1–245305-5, 2008.
  • [19] M. F. Pereira, “Valence intersubband gain without population inversion”, Centr. Eur. J. Phys., DOI: 10.2478/s11534-009-0061-5 (in press) [Online]. Available: http://www.springerlink.com/content/j9nm0k6179g142n6/
  • [20] M. S. Vitiello, G. Scamarcio, V. Spagnolo, B. S.Williams, S. Kumar, Q. Hu, and J. L. Reno, “Measurement of subband electronic temperatures and population inversion in THz quantum-cascade lasers”, Appl. Phys. Lett., vol. 86, no. 111115–111117, 2005.
  • [21] M. F. Pereira Jr., S.-C. Lee, and A. Wacker, “Controlling many-body effects in the midinfrared gain and terahertz absorption of quantum cascade laser structures”, Phys. Rev. B, vol. 69, p. 205310, 2004.
  • [22] R. Nelander, A. Wacker, M. F. Pereira Jr., D. G. Revin, M. R. Soulby, L. R. Wilson, J. W. Cockburn, A. B. Krysa, J. S. Roberts, and R. J. Airey, “Fingerprints of spatial charge transfer in quantum cascade lasers”, J. Appl. Phys., vol. 102, no. 11, pp. 113104-1–113104-5, 2007.
  • [23] M. F. Pereira Jr, R. Nelander, A. Wacker, D. G. Revin, M. R. Soulby, L. R. Wilson, J. W. Cockburn, A. B. Krysa, J. S. Roberts, and R. J. Airey, “Characterization of intersubband devices combining a nonequilibrium many body theory with transmission spectroscopy experiments”, J. Mater. Sci. Mater. Electron., vol. 18, no. 7, pp. 689–694, 2007.
  • [24] A. Wacker, “Coherence and spatial resolution of transport in quantum cascade lasers”, Phys. Stat. Sol. C, vol. 5, no. 1, pp. 215–220, 2008.
  • [25] T. Kubis, “Quantum theory of transport and optical gain in quantum cascade lasers”, Phys. Stat. Sol. C, vol. 5, no. 1, pp. 232–235, 2008.
  • [26] G. Scalari, S. Blaser, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz emission from quantum cascade lasers in the quantum Hall regime: evidence for many body resonances and localization effects”, Phys. Rev. Lett., vol. 93, no. 23, pp. 237403-1–237403-4, 2004.
  • [27] M. F. Pereira Jr. and H. Wenzel, “Interplay of Coulomb and nonparabolicity effects in the intersubband absorption of electrons and holes in quantum wells”, Phys. Rev. B, vol. 70, no. 20, pp. 205331-1–205331-8, 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BATA-0008-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.