PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

LPT and SLPT Measurement Methods of Flat-Band Voltage (VFB) in MOS Devices

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The photoelectric techniques are often used for the measurements of metal oxide semiconductor (MOS) structure parameters. These methods, which consist in illuminating the MOS structure with a semitransparent metal gate by a UV light beam, are often competitive for typical electric measurements. The results obtained by different photoelectric methods are, in many cases, more accurate and reproducible than the results of other measurements. The flat-band voltage VFB is an important parameter of any MOS structure since its value influences the threshold voltage VT , which decides for example about power consumption of MOS transistors. One of the methods to measure the VFB value is the electric method of C(V) characteristic. This method involves certain calculations and requires the knowledge about parameters of the investigated sample. The accuracy of this method is rarely better than š100 mV (for higher doping of the substrates the accuracy is worse). The other method of VFB value determination, outlined in this article, is the photoelectric light pulse technique (LPT) method. This method based on the idea proposed by Yun is currently being optimized and verified experimentally.
Rocznik
Tom
Strony
76--82
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
  • Institute of Electron Technology, Lotnikow av. 32/46, 02-668 Warsaw, Poland, kpisk@ite.waw.pl
Bibliografia
  • [1] B. H. Yun, “Direct measurement of flat-band voltage in MOS by infrared excitation”, Appl. Phys. Lett., vol. 21, no. 5, pp. 194–195, 1972.
  • [2] A. Jakubowski and S. Krawczyk, “Electrical properties of the MIS capacitor under illumination”, Electron Technol., vol. 11, no. 1/2, pp. 3–22, 1978.
  • [3] A. Jakubowski and S. Krawczyk, “Photoelectric method of the MIS flat-band voltage determination”, Electron Technol., vol. 11, no. 1/2, pp. 23–35, 1978.
  • [4] O. Engstrom and A. Carlsson, “Scanned light pulse technique for the investigation of insulator – semiconductor interfaces”, J. Appl. Phys., vol. 54, no. 9, pp. 5245–5251, 1983.
  • [5] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology. New York: Wiley, 1982.
  • [6] M. Leśko and H. M. Przewłocki, “Badanie wpływu temperatury na parametry elektryczne struktur MOS”, Elektronika, no. 2–3, pp. 56–57, 2005 (in Polish).
  • [7] M. Leśko, “Badanie wpływu temperatury na parametry i charakterystyki C(V) struktur MOS”. M.Sc. thesis, Warsaw University of Technology, Institute of Electron Technology, Warsaw, 2004 (in Polish).
  • [8] H. M. Przewłocki et al., “The lateral distribution of the effective contact potential difference over the gate area of MOS structures”, Internet J. Electron Technol., vol. 35, no. 6, pp. 1–6, 2003.
  • [9] H. M. Przewłocki et al., “Distribution of the contact potential local values over the gate area of MOS structures”, Microelectron. Eng., vol. 72, pp. 165–173, 2004.
  • [10] A. Kudła et al., “Photoelectric measurements of the local value of the contact potential difference in the metal-insulator-semiconductor MIS structures”, Thin Solid Films, vol. 450, pp. 203–206, 2004.
  • [11] H. M. Przewłocki et al., “Variability of the local fMS values over the gate area of MOS devices”, J. Telecommun. Inform. Technol., no. 1, pp. 34–39, 2005.
  • [12] K. Piskorski and H. M. Przewłocki, “Distribution of potential barrier height local values at Al-SiO2 and Si-SiO2 interfaces of the metal-oxide-semiconductor (MOS) structures”, Internet J. Electron Technol., vol. 36, no. 5, pp. 1–5, 2004.
  • [13] K. Piskorski and H. M. Przewłocki, “Distribution of potential barrier height local values at Al-SiO2 and Si-SiO2 interfaces of the metal-oxide-semiconductor (MOS) structures”, Bull. Polish Acad. Sci., vol. 54, no. 4, pp. 461–468, 2006.
  • [14] K. Piskorski and H. M. Przewłocki, “Investigation of barrier height distributions over the gate area of Al-SiO2-Si structures”, J. Telecommun. Inform. Technol., no. 3, pp. 49–54, 2007.
  • [15] H. M. Przewłocki, K. Piskorski, A. Kudła, and D. Brzezińska, “Distributions of barrier heights, difference of effective contact po- tential, and local values of flat-band voltage in Al-SiO2-Si and poly- Si-SiO2-Si structures”, Thin Solid Films, vol. 516, pp. 4184–4189, 2008.
  • [16] C. H. Bjorkman, J. T. Fitch, and G. Lucovsky, “Correlation between midgap interface state density and thickness-averaged oxide stress and strain at Si/SiO2 interfaces formed by thermal oxidation of Si”, Appl. Phys. Lett., vol. 56, no. 20, pp. 1983–1986, 1990.
  • [17] S. M. Hu, “Stress-related problems in silicon technology”, J. Appl. Phys., vol. 70, no. 6, pp. 53–80, 1991.
  • [18] I. De Wolf, H. E. Maes, and S. K. Jones, “Micro-Raman study of stress distribution in local isolation structures and correlation with transmission electron microscopy”, J. Appl. Phys., vol. 71, no. 2, pp. 898–906, 1991.
  • [19] I. De Wolf, H. E. Maes, and S. K. Jones, “Stress measurements in silicon devices through Raman spectroscopy: bridging the gap between theory and experiment”, J. Appl. Phys., vol. 79, no. 9, pp. 7148–7156, 1996.
  • [20] K. F. Dombrowski, I. De Wolf, and B. Dietrich, “Stress measure- ments using ultraviolet micro-Raman spectroscopy”, J. Appl. Phys., vol. 75, no. 16, pp. 2450–2451, 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BATA-0008-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.