PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Variation Analysis of CMOS Technologies Using Surface-Potential MOSFET Model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An analysis of the measured macroscopic withinwafer variations for threshold voltage (Vth) and on-current (Ion) over several technology generations (180 nm, 100 nm and 65 nm) is reported. It is verified that the dominant microscopic variations of the MOSFET device can be extracted quantitatively from these macroscopic variation data by applying the surface-potential compact model Hiroshima University STARC IGFET model 2 (HiSIM2), which is presently brought into industrial application. Only a small number of microscopic parameters, representing substrate doping (NSUBC), pocket-implantation doping (NSUBP), carrier-mobility degradation due to gate-interface roughness (MUESR1) and channel-length variation during the gate formation (XLD) are found sufficient to quantitatively reproduce the measured macroscopic within-wafer variations of Vth and Ion for all channel length Lg and all technology generations. Quantitative improvements from 180 nm to 65 nm are confirmed to be quite large for MUESR1 (about 70%) and Lmin(XLD) (55%) variations, related to the gate-oxide interface and the gate-stack structuring, respectively. On the other hand, doping-related technology advances, which are reflected by the variation magnitudes of NSUBC (30%) and NSUBP (25%), are found to be considerably smaller. Furthermore, specific combinations of extreme microscopic parameter-variation values are able to represent the boundaries of macroscopic fabrication inaccuracies for Vth and Ion. These combinations are found to remain identical, not only for all Lg of a given technology node, but also for all investigated technologies with minimum Lg of 180 nm, 100 nm and 65 nm.
Rocznik
Tom
Strony
37--44
Opis fizyczny
Bibliogr.8 poz., tab.
Twórcy
autor
autor
autor
autor
autor
  • Graduate School of Advanced Sciences of Matter, Hiroshima University, Kagamiyama 1-4-2, Higashi-Hiroshima 739-8527, Japan
Bibliografia
  • [1] K. J. Kuhn, “Reducing variation in advanced logic technologies: approaches to process and design for manufacturability of nanoscale CMOS”, in Proc. IEEE IEDM Tech. Dig., Washington, USA, 2007, pp. 471–474.
  • [2] BSIM3, BSIM4, BSIMSOI [Online]. Available: http://www-device.eecs.berkeley.edu/_bsim3/bsim4.html
  • [3] W. Zhao and Y. Cao, “New generation of predictive technology model for sub-45 nm early design exploration”, IEEE Trans. Electron Dev., vol. 53, no. 11, pp. 2816–2823, 2006.
  • [4] K. Takeuchi et al., “Understanding random threshold voltage fluctuation by comparing multiple fabs and technologies”, in Proc. IEEE IEDM Tech. Dig., Washington, USA, 2007, pp. 467–470.
  • [5] M. Miura-Mattausch et al., “HiSIM2: advanced MOSFET model valid for RF circuit simulation”, IEEE Trans. Electron Dev., vol. 53, no. 9, pp. 1994–2007, 2006.
  • [6] M. Miura-Mattausch, H. J. Mattausch, and T. Ezaki, The Physics and Modeling of MOSFETs: Surface-Potential Model HiSIM. Singapur: World Scientific, 2008.
  • [7] G. Gildenblat et al., “PSP: an advanced surface-potential-based MOSFET model for circuit simulation”, IEEE Trans. Electron Dev., vol. 53, no. 9, pp. 1979–1993, 2006.
  • [8] H. C. Pao and C. T. Sah, “Effects of diffusion current on characteristics of metal-oxide (insulator) semiconductor transistor (MOST)”, Solid-State Electron., vol. 9, no. 10, pp. 927–937, 1966.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BATA-0008-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.