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ABSTRACT 
Using of stochastic dynamics methods, the probability distribution function 

of molecules by their moving directions in arbitrary porous media, where free 
molecular flow takes place, was determined. It was shown that, in some cases, the 
molecules in the channel can generally move athwart the channel, while an average 
velocity of molecules moving along the channel can significantly decrease. The 
anisotropic phenomenon and the hysteresis of permeability through composite 
asymmetric membranes were qualitatively explained.  
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INTRODUCTION 
Gas transfer through a porous membrane is a rather complicated 

problem, as the structure of media is generally disordered and it cannot be 
represented by a set of regular objects (cylindrical capillaries, spheres etc.). 
In the composite membranes – the ones that consist of several layers 
(substrate, intermediate finely porous, and the functional layers), the flow is 
getting even more difficult. Permeability can depend on the side of a 
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membrane to which the flow is fed – to the substrate or to the functional 
layer. According to a resistance model [1], permeability has to be similar in 
both cases. A 3-5% difference in flows can be explained by a change in 
average pressure in viscous flow conditions [2], but when the fluxes fed to 
different sides of a membrane differ in several times [3] another (new) 
approach to the description of a membrane permeability has to be used.  

 
METHODS AND PROCEDURES 

When examining membranes that consist of arbitrary structural 
elements, some generalized parameters are introduced – hydraulic radius, 
porosity, tortuosity, etc.  

We will consider the media with the size of pores, such that the 
surface flows can be neglected. In these conditions, there can be two 
independent flow mechanisms through the membrane, i.e. Knudsen (free-
molecular) Jk and viscous flow Jps, where Jps consists of viscous Poiseuille 
flow Jp and slip flow Js. According to Weber’s hypothesis, the overall flow 
is equal to the superposition of these three flows: 

 
J=a(ρ/λ) Jk +b(ρ/λ) Jps.,    (1) 
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where ρ - hydraulic radius (determined as doubled pores volume divided by 
inner surface area), η - viscosity, VT – average thermal velocity, R - absolute 
gas constant, T – temperature, dP/dz – pressure gradient. 

Coefficients a(ρ/λ) and b(ρ/λ) can be calculated by formulas:  
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where χ depends on the ratio collision number of molecules with a surface 
and a collision number between molecules. In the case of full 
accommodation, χ=2. 
From the Chapman’s expression for the viscosity [4], we can write the 
expression for pressure:  

λπη= 4/VP T
 

Then, using the equations (1) – (5), we get the equation for the molar flow 
density at arbitrary Knudsen number value: 
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where f, h and g  – correction factors, considering the difference in 
permeability coefficients in cylindrical capillaries and isotropic porous 
media. Multiplying the factor f is found by the formula f=2ε/k, where k – 
Kozeny-Carman constant, ε – porosity. 

The parameters g and h have to depend on the surface structure. We 
will examine movements in the porous media in the case of free-molecular 
movements using stochastic dynamics. 

The surface of porous media has irregularities of unknown geometric 
characteristics, so we can expect the reflection of molecules from the inner 
surface at the accidental angle. 

We will examine the media through which the flow occurs along the 
x axis. Let θ be the angle between the direction of molecule movement and 
normal line to axis x. We will examine the channel in these media, surface 
of which is determined by the random function ξ(x). To make it simpler, one 
can assume that all the molecules move with the average thermal velocity 
VT. Then, we can write: 

 

)(1 xnn ξθθ +−=+  
 
where n – collision number in the channel. In this equation, the first 
summand is the law of specular reflection, and the second – the influence of 
the channel irregularity.  

In order to pass on to a continuous change of an angle in time, let τ be 
the period of time between two sequential collisions. In isotropic media, for 
example, formed by spheres, there can be only average time τ between two 
sequential collisions. If all the molecules move with the same average 
thermal speed VT, we can write τ=ρ/VT. 

We will rewrite the previous equation in a form: 
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Replacing the finite difference on the left side (7) by an ordinary 

derivative:  
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We will regard the random function ξ(x) as the white noise by the 

time ξ(t). Then, the function ξ(t) will follow the conditions: 
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where σ – white noise amplitude that describes the surface irregularities. 

Particularly, as the first approximation the system of closely packed 
spheres with irregularities of accidental forms turns to be the system, which 
can be described by means of white noise. Then, it is valid to replace ξ(x) by 
ξ(t), and (8) will be written as: 
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The stochastic differential equation (9) is the Langevin equation [5]. This 
equation is similar to Langevin equation in the problem of the Brownian 
particle motion in relation to its velocity [5]. Then by analogy to the 
solution of the problem concerning the Brownian particle motion, a mean-
square angle <θ2> will be found with the following equation.  
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where γ – certain parameter characterizing the jitter of the pore surface. 
From <θ2> we can see that for long periods of time the initial values 

can be neglected, and mean-square angle approaches the value γρ/(4VT) that 
is determined by the system itself. 

The Langevin equation (9) corresponds with the Fokker-Plank 
equation [6] concerning the probability distribution function f(θ,t): 
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The stationary solution (10) of the Fokker-Plank equation looks like:  
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Function f(θ) is the even function θ and it depends on the parameter 
A=2ρ/(σ2VT), the value of which determines the distribution width.  

The number of molecules going through an arbitrary cross-section in 
the x direction is determined from:  
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In the case of equiprobability of distribution of molecular directions 
by angles, the number of molecules going through the arbitrary cross-
section in the x direction in a unit of time is written as: 
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By comparing Eq. (12) and (13) and considering (11) we are enabled 

to draw a conclusion that in the case of defined pressure drop on the border 
of the porous media the value of free-molecular flow considering tangling 
of trajectory of molecule’s move noticeably decreases. This result comes 
directly from the analysis of the function f(θ) (11), since with the increase of 
velocity vector deviation from the normal line to the surface, the value f(θ) 
rapidly decreases.  

The parameter g in the equation (6) can be defined from the 
comparison of the equations of Knudsen flows in the case of distribution 
equiprobability by angles and in the case of distribution (11). The 
dependence of the h parameter on the characteristics of the channel surface 
irregularity can be determined by the comparison of slip velocities on the 
surface. It is essential to emphasize the fact that the white noise 
characteristics come to the general equation of the flow (6) only in terms of 
the g and h parameters. In other words, the form of equation (6) remains the 
same. 

The parameter χ from equation (6) in the case of the anisotropic 
distribution function (11) сan be calculated using (12). 

 
RESULTS AND DISCUSSIONS 

The results obtained enabled us to explain qualitatively an 
experimental dependence of composite polymer membrane permeability on 
the pressure drop on it.   

The experiments were carried out using the apparatus that enables 
measuring permeability under both integral and differential conditions. 
Flow rate measuring was carried out using the constant pressure method. 
For fastening the experiment a special cell, that enabled measuring the 
permeability in the wide range of change in pressure and pressure drop was 
used. 

The asymmetric PVTMS (polyvinyltrimethylsilane) membrane was 
the object of research. It has three clearly defined layers: diffusive 
(homogeneous) of 0.1-0.2 µ width, finely porous of 10-15 µ width and pore 
size up to 0.3 µ, and the layer with large (up to 4 µ) transport pores. An 
overall membrane width was about 150 µ. The influence of transport pores 
on the permeability of the membrane was considered to be small. 
In figure 1 we can see the dependence of helium permeability on the 
pressure drop. High pressure at the cell input changed in the range from 1 to 
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3 bars; low pressure at the cell output was kept about 1 bar. On the graph we 
can see that permeability depends on the side to which the flow is fed. If the 
flow is fed to the non-porous selective layer, permeability slightly changes 
in dependence on the pressure. But when the flow is fed to the porous 
substrate layer, its value noticeably increases with the increase of average 
pressure. In the case of low pressure the difference between permeability 
increases twice in values. Moreover, permeability in the case of gas fed to 
the substrate layer is noticeably lower. A decreasing of influence of 
permeability value anisotropy with an increase in pressure is connected with 
the increasing fraction of viscous flow which is determined only by the 
channel form not depending on the surface characteristics.  
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Fig. 1. Dependence of PVTMS membrane’s helium permeability on the high 

pressure: 1 – gas fed to porous substrate, 2 – gas fed to selective layer. 
 
 

In order to explain figure 1 we will examine the two-layer composite 
membrane that consists of a non-porous selective layer and finely porous 
substrate layer, where the free-molecular conditions are fulfilled and 
molecular trajectory tangling phenomenon is possible. In figure 2, the 
scheme of the flows moving in the two-layer composite porous membrane is 
presented. We will consider that anisotropic stochastic moving of molecules 
takes place in the first layer (a layer with relatively large pores). The area of 
pores of the first layer labeled as S1, the second layer - S2= ξS1. The 
concentration of molecules outside the membrane before the first layer is 
N1, and after the second layer it is N2. Inside the first layer the concentration 
changes from n1 to n1*, and in the second layer from n2* to n2.  

If the gas is fed to the first layer side, molecules go through the layer 
with relatively large pores, then in the boundary region of the two layers, 
only a part of molecules penetrates through it and goes through the second 
layer; the rest of the molecules interacts with the boundary region in the 
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same way as with the channel border. This interaction leads to replacing one 
distribution function to another. Before the interaction the advantage 
directions were athwart the channel, after – along the channel. 
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Fig.2. Scheme of the flows moving in the two-layer composite membrane. 
 
 
It means that, after the interaction with the boundary region, 

molecules have considerably large average projection of velocity along the 
channel <Vref> , then before the interaction <Vx1>. Moreover, after the 
interaction, molecules are directed from the boundary region to the first 
layer.  

Balance equations at the environment/first layer boundary, at the 
boundary region of the two layers, and at the second layer/environment can 
be written as: 

 
J=¼ N1 VT  – n1<Vx1> 
J=n*1 <Vx1> – ξ n*2 <Vx2> – (1-ξ)n*1<Vref> (14) 
J=ξ (n2 <Vx2> – ¼ N2 VT) 

 
Simultaneously, with diffusion equations (such as equation (6)) for 

the both layers, balance equations (14) describe the permeability of the two 
layer membrane. According to this model the necessary condition for 
permeability anisotropy is the anisotropic distribution of molecules by their 
moving directions. If the condition (<Vx1>) < (<Vref>) is fulfilled, then the 
flow from the first layer (with anisotropic stochastic moving of molecules) 
to the second one can be lower several times than the reverse flow. 

It is significant that in the case of full accommodation balance, 
equations analysis gives no anisotropic effect.  

 
EXPERIMENTAL PART 

In figure 1 the dependences of the membrane permeability versus the 
pressure an the membrane cell input in the case of gas fed to the substrate 
(curve 1) and to the selective layer (curve 2) is presented. We can see that 
curve 2 is situated above curve 1 as the result of permeability anisotropy. It 
is interesting that the curve 1 is a rapidly increasing function because of 
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increase in viscous flow part. The character of curve 2 is mainly determined 
by properties of the selective layer and the permeability change weakly 
depends on pressure. 

In figures 3 and 4 the dependences of the membrane permeability on 
the pressure at the membrane cell input (in the case of gas fed to the 
substrate (fig.3) and to the selective layer (fig.4)) are presented. 

 

0

500

1000

1500

2000

2500

3000

3500

4000

1.00 2.00 3.00 4.00 5.00

Pup, bar

D
, l

/(m
^2

*h
*b

ar
)

1 2 3 4

 
Fig.3. Dependence of PVTMS membrane’s nitrogen permeability on the high 

pressure when the flow is fed to the substrate layer side: 1 – cycle 1, increasing 
pressure; 2 – cycle 1, decreasing pressure; 3 – cycle 2, increasing pressure; 

4 – cycle 2, decreasing pressure. 
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Fig.4. Dependence of PVTMS membrane’s nitrogen permeability on the high 

pressure when the flow is fed to the selective layer side: 1 – increasing pressure, 
2 – decreasing pressure. 
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In figure 3, the dependence is derived in a certain succession: at the 
beginning of experiment, pressure increased from 1 to 5 atmospheres (curve 
1), and after that decreased from 5 to 1 atmosphere (curve 2). It turned out 
that the curves in figure 3 do not coincide at all. A relationship by its 
appearance looks like hysteresis, moreover curve 2 goes higher than curve 
1. It is interesting to point out the fact that in the second cycle of pressure 
increase (curve 3) the dependence of permeability is close to the first cycle 
of curve 1. 

In figure 4 we see the same type of dependence – when pressure 
decreases the permeability curve goes up. 

The curves on figures 3 and 4 (hysteresis phenomenon) can be 
interpreted on the basis of anisotropic distribution function of molecules by 
their moving directions. Let us examine one layer porous membrane where 
anisotropic distribution function of molecules by their moving directions 
takes place. Flow through the layer depends on its concentration. Flow 
equations (12) and (13) we can see, that process of decreasing concentration 
in the porous membrane is slower than an increase in concentration. It 
means that if we increase feed pressure, the concentration of molecules in 
the membrane increases, and consequently the flow increases too, what we 
can see on the curve 1. As pressure decreases, the concentration of 
molecules in the membrane decreases not immediately, because the majority 
of molecules there move across the channel and only a small portion of 
molecules leave the finely porous layer (12). It leads to the situation that in 
the case of decreasing feed pressure flow through the membrane is found to 
be higher than at the same feed pressure but under different conditions of its 
change (increasing or decreasing). 

 
CONCLUSION 

The probability distribution function of molecules along the 
movement direction in the porous media was calculated. It was shown that 
the molecules in the channel in some cases can move generally athwart the 
channel, while the average velocity of molecules’ moving along the channel 
can appreciably decrease. These effects are determined by specific 
interactions between the molecules and the internal pores surface. 

The anisotropy phenomenon of the flow value, when it is fed to the 
substrate and to the selective layer was qualitatively explained. The 
hysteresis phenomenon for the flow going through the composite 
asymmetric membranes in sequential cycles of increasing and decreasing 
pressure was revealed and qualitatively explained.  
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