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ABSTRACT 

One of the possible approaches to the introduction of the value function in 
the case of multi-isotope mixtures is presented. It is based on a simplified model of 
separation processes in cascades and elements with multiplication of elementary 
effects of separation. A differential equation, being a necessary condition of the 
determination of the value function, is derived from the analysis of this model. Its 
general solution contains arbitrary constants which should be obtained considering 
boundary conditions and specific features of the separation process. Additional 
conditions concerning use of the found solutions in cascade criteria of an estimation 
of separation efficiency are stipulated. The applicability of various kinds of the 
value function forming at different conditions is analyzed. The forms of the value 
function which reflect best the optimal cascade with assigned external 
concentrations of the desired isotope and the matched abundance ratio cascade 
(MARC) are established. 
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INTRODUCTION 

K. Cohen, D. Dirac and R. Peierls developed the principles of the 
value function theory for a binary isotope mixture [1, 2]. Their theoretical 
provisions allowed determining the value function for the main instances of 

ARS 
SEPARATORIA 

ACTA 
www.ars_separatoria.chem. 

uni.torun.pl 

  

AA  



Palkin Ars Separatoria Acta 3 (2004) 51-61 

 52 

binary separation. However, their application to a multicomponent isotope 
mixture leads to an inconsistency of the obtained results and initial 
assumptions [3].  

Attempts were made to negotiate the contradictions by changing 
Dirac's axioms [3-6] and constructing the value function and the separation 
power on the basis of a matched abundance ratio cascade (MARC) [7, 8]. 
All of them restrict, somehow or other, the use of the obtained results in 
practice. For example, the approach changing Dirac’s axioms preassigns 
certain properties to the value function and the separation power, which may 
not be realized in a specific separation process. Oppositely, the approach of 
MARC reduces the problem of determining this function to particular case.  
This study develops one of the possible axiomatic approaches which was 
used for substantiation of the value function of a binary isotope mixture [9] 
and a multi-isotope mixture [10]. This approach makes it possible to derive 
the most general expression for the value function. It includes arbitrary 
constants depending on specific features of the separation process.  
 

PROBLEM STATEMENT 
The isotopes mixture value is characterized by the function U, which 

is the product of the mixture quantity and the value function V. The value 
function depends on the isotope component concentrations С1, С2, …, Сm, 
which imply molar or mass fractions. We shall assume, to make certain, that 
the components are numbered in the increasing order of their molecular 
masses M1 < M2 <…< Mm. The sum of the concentrations equals unity, i.e. 

∑
=

=
m

i
iC

1
1 . Therefore, m−1 concentrations are independent.  

Let us label the concentration vector as C = (С1, С2, …, Сm). Assume that 
the variation (increment) rate of the mixture value in any separation device 
(an element, a stage, a cascade, etc.) can be written in the form 

)()()( 00 CCC GVGVGU −+=∆ −−++  (1) 
where G + , G − , and G0 are the product, waste and feed flows respectively 
(see Fig.1.); С + , С − , and С0 are the corresponding concentration vectors. 
The ∆U value determines the separation power of the device, i.e. the work 
done by the device per unit of time.  
 
 
 
 
 
 
 
 
 

Fig. 1. Diagram of a separation device. 
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Considering the matter balance equation −+ += GGG 0 , the expression 

(1) can be transformed to ( ) ( )[ ]0CC VVGU −=∆ ++  +  

( ) ( )[ ]0CC VVG −−−  and, assuming the presence of continuous 
derivatives for V(C), to the relationship  

.
00

∫∫
−+

−+ +=∆
C

C

C

C
dVGdVGU                  (2) 

Here i
i i

dC
C
VdV

m
∑
= ∂
∂

=
1

 is the total differential of the function V(C), while 

integration is taken along the curvilinear path. The expression (2) can be 
interpreted as follows. 
The integrals in (2) are curvilinear integrals of the second type. These 
integrals are used for calculation of the work (mechanical, thermodynamic, 
etc.) done to convert a physical object from one state to another [11]. In this 
model the conversion process is assumed to be continuous with an infinitely 
small change of the state parameters. In the case of a separator, this model 
provides a simplified description of real processes, which are characterized 
by a one-parametric change of the concentrations. This representation 
corresponds most to linear cascades and elements with analogous 
multiplication of elementary effects of separation (for example, a gas 
centrifuge). Since the integration operation is additive, the work and, 
consequently, the ∆U value in (2) is calculated without losses irrespective of 
the form of the integrands. It means that the work is exactly equal to the 
sum of a large number of all single made works. If the integrands are total 
differentials as in (2), the work value is independent of the curvilinear path, 
but is determined by the initial and final states of the object.  
In this paper, the problem of finding the explicit value function which is not 
connected with properties of the concrete separator is reduced to the 
introduction of a standard unit of the separation power. This unit should not 
be related to the flow measurement units. Since ∆U is the sum of a large 
number of small changes in flow concentrations G+  and G– , an infinitely 
small δU value can be reasonably taken as the standard. Let it correspond to 
an elementary effect of separation (EES) of a small feed flow δg. Assume 
that EES is characterized by the total enrichment factors εi << 1 and 

mi ,1=  at each point of the curvilinear path determined by the vector C. 
The εi values will be calculated relative to the m-th base component on the 
assumption of their concentration independence. In this case, δU can be 
written as (1) with С+ , С − , and С0 replaced by С', С", and С. Expanding the 
obtained expression as a Taylor series about C and limiting ourselves to 
terms of the second order of smallness, we have, by analogy to relationships 



Palkin Ars Separatoria Acta 3 (2004) 51-61 

 54 

for element of small separation effects (see, e.g., [12, 13]), the following 
relationship:  

( ) ( )( )"'"'15.0
1,

2

jji
ji ji

CCCC
CC

VgU i
m

−−
∂∂

∂
−= ∑

=
θθδδ       (3) 

where θ is the  cut  of the flow δg; (Сi' – Сi") and (Сj' – Сj") stand for the 
total enrichment of the i-th and j-th components calculated from the 
formulas [3] 








 −=− ∑
=

m

n
nn CCCC iiii

1
"' εε , mi ,1=                    (4) 

The estimation of ∆U in the EES units is equivalent to calculation of the 
corresponding number of elementary effects of separation N. As implied by 
the model with respect to a cascade, N is a minimal required number of 
separation elements having infinitely small effects of separation. 
Mathematically, the N value is found by integration of analogous 
differential values of n(t) over curvilinear path which are assigned by 
parametric equations Ci = Ci (t), mi ,1= . The n(t) values are determined 
from the formula n(t) = ρ∆U (t) / δU assuming the absence of the separation 
work loss. The function ρ∆U (t) is the density of the ∆U distribution over 
points of the curvilinear path corresponding to (2) reduced to the form 

( ) ( )∫ ∫ ∆∆ +=∆
1

0

2

0

t

t

t

t
dttdttU UU ρρ , where t0, t1, and t2 are values of the 

parameter t at the points С0, С + , and С – . Since δU contains effects of the 
second order of enrichment smallness, ρ∆U (t) should be expressed through 
(2) as the second derivatives of the value function V(C). To this end, the 
expression (2) is rearranged using the formula of integration by parts.  
The analysis of the derived expressions shows that the density n(t) for a 
multicomponent mixture (m ≥ 3) depends, as distinct from the binary 
separation (see [9]), on the choice of the value function. If the function V(C) 
is chosen arbitrarily, N depends on the integration path, i.e. on intermediate 
stages of the mixture value variation. The N value is invariant, and ∆U is 
defined unambiguously in EES units by the initial and final concentrations 
if the n(t) differs from ρ∆U (t) by a constant factor. This is the case only 
when δU is independent of the concentration, i.e.  

constU =δ                                               (5) 
The condition (5) limits the choice of the value function V(C). The 
relationship (5) is written for a separator with an arbitrary separation effect. 
Its physical essence reduces to the necessary requirement of a unique 
determination of the separation power of any element. In the case of 
infinitely small effect of an element, it is analogous to the differential 
equation considered by Smorodinsky [12]. It should be noted also that the 
solution of the equation (5) for a binary mixture and small separation effects 
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leads to Dirac's value function ( ) ( ) ( )[ ]CC/CCV −−= 1ln12  (C being the 
concentration of a light isotope).  
The fulfillment of the condition (5) means that the separation power of a 
separator is proportional to the number of elementary separation effects 
performed, i.e.  

( ) ( ) ( ) UNVGVGVGU δ=−+=∆ −−++
00 CCC        (6) 

The formula (6) represents an idealized relationship. It can be used to 
estimate the lower limit of the number of separation elements in a 
multicomponent cascade with assigned external parameters.  
 

SOLUTION OF THE PROBLEM 
The constant in (5) can be chosen differently. If it is taken equal to 

the factor 0.5δgθ(1–θ)  before the summation signs in (3), the differential 
equation  
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should be solved to determine V(C).  
The solution of (7) depends on boundary conditions. When the mixture 
value is assumed as infinitely large after removal of a component, boundary 
conditions are written in the form [13]:  
 ( ) ( ) ( ) ∞==== − 0,,,,,,,0,,,,0 121312 mmm CCCVCCCVCCV KKKK .
 (8) 
These conditions are met by Smorodinsky's solution [12] 

∑
=

−=
m

ji
ijiij CCCAV

1,
ln)()(C  at ( )( )[ ]211 jiij mA εε −−= , i ≠ j. In 

the case of small separation effects, ( ) iii mm MMM ∆=−= 00 εεε  and 

jj mM∆= 0εε , where ε0 is the enrichment factor per unit of the mass 

difference. Therefore, the value function was multiplied by 2
1ε :  

( ) ( ) [ ]∑
<
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=
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jijiji CCCCMM
m

V
1,

2
1 ln

1
1 )(C        (9) 

The formula (9) corresponds to Dirac's value function for binary mixtures 
and the substitution of the constant in (5) for δU = 0.5δgθ(1−θ) 2

1ε . One 
more form of Smorodinsky's value function [13] is found analogously. It is 
derived by substituting the factor 2

0ε  for 2
1ε . Notice that the value function 

may be supplemented with linear and power functions of component 
concentrations which represent solutions of the corresponding homogeneous 
differential equation (7) [7, 13]. However, they are not necessarily taken 
into account if the separation power is concerned.  
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One more form of the value function is known in addition to Smorodinsky's 
value function. It was obtained by De La Garza for a three-component 
mixture [7]. A specific feature of the solution is that it corresponds to the 
matched abundance ratio cascade (MARC). The determined value function 
need to be verified to apply for other cascades.  
The analysis shows that Smorodinsky's value function is a particular case of 
the general solution which can be found from the consideration of the 
function [ ]lkkkkl CCCaV ln=  at lk ≠  and mlk ,1, = . The second 

concentration derivatives Vkl are kkkkl CaCV =∂∂ 22 , 
222
lkklkl CCaCV =∂∂ , lklkkl CaCCV −=∂∂∂ 2  and 

ji CCVkl ∂∂∂2 = 0 at lkji ,, ≠ . Hence, substituting Vkl as V(C) to the left-
hand side of the equation (7), we have  
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Therefore, if 2)/(1 lkka εε −=  is chosen, this expression is equal to Сk. 
Significantly, this result is independent of the l-th component at hand. 

Therefore, any linear combination ∑
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l
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gives an analogous Сk value. If all functions Vk, are summed up, i.e. the 

value function is taken as ( ) ( )[ ] [ ]lkklk
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equation (7) is identically satisfied:  
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This value function may be written in the form analogous to (9):  

( ) ( ) ( ) [ ]jijjiiij

ji
ji

ji CCCbCbMMV
m

m ln
1,

2
1 −∆∆= ∑

<
=

C       (10) 

The coefficients bij should be chosen considering assigned boundary 

conditions and the requirement ∑
=

=
m

j
ijb

1
1 at i ≠ j. It is easy to see that the 

same "weight"  ( )11 −= mbij  of all pairs of components leads to 
Smorodinsky's formula (9) corresponding to the conditions (8). The value 
function (10) at arbitrary 0≠ijb  satisfies these conditions, too. This is an 
indication that the boundary conditions (8) are not exhaustive. Specific 
features of the separation process at hand should be itemized for the proper 
selection of the constants bij.  
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One of the most frequent practical problems is separation of two main 
components r and s (having extremely opposite molecular masses as a rule) 
at small concentrations of other isotopes. In this case, most of the separation 
work is done for these components. Therefore, it is reasonable not to assume 
the mixture value in the absence of other isotopes as infinite, but to find it 
from the binary value function V0(Сr, Сs) of the r-th and s-th components, 
i.e.  

( ) ( ) ( ) ( ) [ ]srsrsrsr CCCCMMCCVV m ln, 2
10 −∆∆==C    (11) 

at Сi = 0, mi ,1= , and i ≠ r,s.  
It is easy to see that (11) is fulfilled if 0== siri bb  is taken in (10) for all 

sri ,≠ . Hence, 1== srrs bb  and the terms with the indices r and s are 
equal to V0(Cr, Cs). Moreover, finiteness of the value function when 
concentrations of individual minor components turn to zero requires that 

0=ijb  at srji ,, ≠ . Therefore, the value function can be written in the 
form  

( ) ( ) ( )∑
≠
=

++=
m

sri
i

isirsr VVCCVV

,
1

**
0 ,C                       (12) 

where ( ) [ ]riiirriir CCCbMMV m ln2
1

* ∆∆=  and Vis
* is an analogous 

expression, in which the index r is replaced by s.  
The second term in (12) is negative. It decreases the mixture value as 
compared to the binary estimation depending on the presence and the 
combination of minor components with r-th and s-th isotopes. Therefore, bir 
and bis (bir+bis=1) may be chosen considering the priority of the loss of the 
mixture value. For example, if the separation work done for the r-th isotope 
is assumed to be most important, one can take bir = 1 and bis = 0. If the r-th 
and s-th components are equally significant, then bir = bis = 0.5.  
An analogous approach may be used in more complicated cases. A large 
number of choice options for the constants bij and bji in (10) suggests a host 
of idealized separation processes without the loss of the separation work 
(according to (6)). It is necessary to note that the value function of MARC is 
received if the coefficients are equal: brs= bsr=1, bri= bsi= bij=0 for all 
i,j ≠ r,s and ( ) iirir aMb /2∆−= , ( ) iisis aMb /2∆= , where 

( ) 02 ≠−+∆= isrsri MMMMa . In this case, the value function is 
written in the form 

( ) ( )∑
=
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i s
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iim C

CCaMV
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2
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It corresponds to the expression founded by De La Garza for a three – 
component mixture of isotopes in the case when the key components r and s 
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are neighboring by molecular weight, i.e. 1+= rs . The general efficiency 
criterion of such cascades was received in [8]. In this case, the value 
function satisfies boundary condition (9) and equalities of the abundance 
ratio between r-th and s-th components sr CCR /=  for the feed flows of 
the each stage of MARC. 
 

ANALYSIS OF SOLUTIONS 
Specific features of the obtained value functions were analyzed by 

calculating the separation power eUδ  of separating elements at different 
concentrations of the feed flow C0. The eUδ  value was calculated from the 

formula (1) considering assigned total separation factors qi, mi ,1=  

(determined from the relation to the m-th isotope) and the cut 0GG +=θ . 
The concentrations С+  and С–  were calculated using known relationships of 
the theory of separating elements [3]. It was found that if separation effects 
were small and characterized by qi ≤ 3 and θ = 0.5, the separation power 
weakly depended on C0. The eUδ  value changed by ~1-2% for different 
forms of the value function. The variation was much larger at θ ≠ 0.5. If 
θ = 0.3 or θ = 0.7, the difference of the eUδ  values was as large as 20% at 
different C0 and q1 = 3.  
This behavior of the dependence of eUδ  on the mixture composition is 
analogous to the one obtained for a binary mixture of isotopes (see [9]). 
However, the invariance of θ at different concentrations of the feed flow 
does not reflect optimal operating conditions of elements in a cascade. In 
this connection, calculation was made for counter-flow symmetric cascades 
with assigned external concentrations of the desired isotope. Calculation 
was performed by the method [14] using the criterion of the minimum of the 
total feed flow. It was found that when C0 and θ changed considerably in 
stages of an optimal cascade, the specific separation power of stages 
∆ stU / 0G  changed insignificantly.  

By way of example, the Table 1 gives ∆ stU / 0G  in stages of a silicon 
cascade [10]. The initial mixture of silicon isotopes corresponded to the 
working gas SiF4 having the molecular masses of 104, 105, and 106, and the 
concentrations of 92.21%, 4.70%, and 3.09%. The desired isotope 
concentration of the product flow was assigned at 99.99% and that of the 
waste flow at 0.01%. The product flow of the cascade was taken as 1 g/s 
and the separation factors of the stages were q1 = 3 and q2 = 3 . The 
optimization procedure gave an optimal cascade comprising 62 stages with 
the feed flow fed to the 40th stage. At considerable changes ∆ stU  and 0G  of 
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the stages, the ∆ stU / 0G  value, which was determined from (1) and the 
value function (12) at r = 1, changed little and was equal to ~0.147-0.150.  
 
 

Table 1. Separation efficiency of a silicon cascade 
 

Value function Stages Cascade 
Formula Features ∆Ust/G0 ηst , %*) µ , % η , % 

b31=1 0.148-0.150 96.1-100.0 99.4 99.6 
b31=0.5 0.147-0.150 89.8-100.0 98.7 98.9 r=1, s=2 
b31=0 0.147-0.150 83.4-100.0 98.0 98.2 

r=1, s=3 b21=1 0.148-0.149 1.8-99.4 77.6 78.5 
(12) 

r=2, s=3 b12=1 0.142-0.150 3.5-100.0 89.5 90.0 
Smorodinsky's formula (9) 0.145-0.149 37.7-99.1 83.5 84.3 

*) Without extreme stages.  
 
 
 
One of the indicators of the stage performance is the coefficient of 
efficiency ηst = 1 − ∆ mixU /∆ stU  [12]. It takes into account the loss of the 
separation power ∆ mixU  caused by mixing of feed flows with different 
concentrations. The loss ∆ mixU  is equal numerically to the separation 
power, which is required to separate a total feed flow 0G  with 
concentrations С0 into individual feed flows: 

( ) ( )[ ]∑ −=
i

ii VVG∆U mix 000 CC . In this formula, iG0  and С0i denote the 

flow and the concentration of the i-th feed flow while the sum is taken over 
all flows fed to the stage. From the Table, it is seen that ηst of the stages was 
high, ηst ≈ 96-100%, for the value function (12) at r = 1, s = 2 and b31 = 1: 
( ) ( ) ( ) [ ] [ ]1332121

2
2131 lnln CCCCCCCMMV +−∆∆=C . This form 

of the value function is intended to estimate the mixture value with respect 
to the first two components with the priority of the desired light isotope. In 
terms of other value functions which do not distinguish this isotope, the 
aforementioned optimal cascade is less efficient.  
This difference of the value functions shows up at the level of cascade 
parameters, too. By way of example, the Table gives estimates of 
coefficients η and µ of the cascade. These coefficients were calculated from 
the formulas: η = ∆Ucasc /∆Utot, µ = ∑Gcal / ∑G. Here, ∆Ucasc is the 
separation power of the cascade with respect to external flows and 
concentrations (according to (1)), and ∆Utot is the total separation power of 
the stages. Accordingly, ∑Gcal  is the calculated total feed flow of the stages, 
and ∑G is the actual one. To determine ∑Gcal, the value ∆Ucasc was divided 
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by the maximum specific separation power of a stage (∆Ust/G0)max. This 
quantity was taken equal to 0.150 for all the value functions. The best 
cascade parameters were calculated from the value function (13) at r = 1, s 
= 2 and b31 = 1: η = 99.6% and µ = 99.4%. The corresponding values were 
η ≈ 78.5-98.9% and µ ≈ 77.6-98.7% for the other value functions 
considered above.  

These data show that a large difference of the calculated and actual 
values of the total flow in an optimal cascade is due to low coefficient of 
efficiency. This is because each of the value functions is "adjusted" to its 
main components and any deviation of the process from the "ideal" is 
evaluated as a large loss of the mixture value. This loss occurs in a cascade 
mostly when flows with different concentrations are mixed.  

This example and other calculation results show that the performance 
of stages and cascades should be estimated from the value function (12) 
with the appropriate choice of main components and the coefficients bij. If 
the value function is selected properly, the criteria of an optimal cascade are 
the large values of ∆Ust/G0, η and µ. It should be noted that unlike binary 
mixtures, external concentrations of undesired components cannot be 
assigned arbitrarily for a cascade intended for separation of a 
multicomponent mixture. They can be changed within a certain interval 
corresponding to the permissible variation of the number of stages in the 
depletion and enrichment sections of a cascade. Therefore, the separation 
power of a cascade and its other characteristics can be estimated mainly 
after relevant calculation has been made for the cascade.  
 

CONCLUSION  
The general equation (10) for the value function contains m(m − 2) 

arbitrary constants whose values can be chosen differently. This fact 
suggests a multitude of idealized processes of multicomponent separation 
which are not accompanied by the loss of the separation work. From the 
standpoint of practical applications, it is reasonable to perform further 
studies and establish the correspondence between different forms of the 
value function (10) and solutions of the equation (7), and particular 
efficiency functions of the cascade optimization.  
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