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ABSTRACT 

The status of the theory of isotope mixture separation in cascades is 
presented. The problems that limit the concept of an ideal cascade in the case of 
separation of binary mixtures and arbitrary separation factors at cascade stages are 
discussed. A new type of separating cascades which have a total flow less than the 
flow of the corresponding ideal cascade is presented. Furthermore, these “optimum” 
cascades may permit mixing concentrations and still produce higher cascade 
separative work. In the paper, a criterion to define efficiency for the separation of 
multi-isotope mixtures is analyzed. The analysis is based on the concept of the 
match-abundance ratio cascade (MARC). The approach has demonstrated that in 
order to obtain the optimum parameters of a single stage in a cascade it is necessary 
to minimize the linear combination of the inverse values of “partial separative 
powers” for all mixture components. 
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INTRODUCTION 
In the theory of isotope mixture separation the problem of searching 

for the optimum parameters the separation process plays an extremely 
important role. Until now, the theory of the best multistage installations 
(cascades) was developed in a comprehensive way only for the so-called 
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"fine" separation of binary mixtures, i.e. in the case when the separation 
factor for each separating stage of a cascade is very close to unity. The 
theory is based on the concept of the non-mixing condition for the 
concentrations at each point in the cascade where streams merge (such a 
cascade is called “an ideal cascade”). For ideal cascades, the concepts of “a 
separative power”, “a separation potential”, “a value function” and some 
others have been introduced. These concepts have proven to be very useful 
for calculations and optimizing various cascade installations. The numerous 
attempts to generalize this theory for arbitrary separation factors at a single 
stage or for the case of multi-isotope mixtures lead to difficulties that do not 
allow these results to be applied for the practical production of isotopes.  

The paper examines the reasons for these difficulties and analyzes 
possible ways to find optimum conditions of separation in the case of large 
enrichment at each separation stage of a cascade with no limit in the number 
of separated components of an isotope mixture. 

 
SEPARATION OF BINARY MIXTURES 

Small separation factors at each cascade stage 
To specify the problem under investigation, we shall review the basic 

propositions in the theory of ideal cascades for the case of the “fine” 
separation of binary isotope mixtures. 

The cost of work for separation of isotope mixtures is the biggest 
component in the price of the enriched material. For the series of isotope 
separation methods these costs can be estimated as proportional to the total 
number of separating units (elements), each of which has usually one input 
stream (feed) and two withdrawal streams (product and waste). If the total 
flow in a cascade is known and all the units are working under the same 
conditions, the whole number of separating elements n  can be calculated as  
 

G
L

n ∑=      (1) 

where ∑L  is the total flow in the cascade and G is the flow entering each 
element of a cascade. Eq. (1) can be derived easily by using the concept of 
the “ideal cascade” introduced by Cohen [1] to get the most efficient 
cascade. In such cascade, the interstage flows that merge at each confluent 
point have identical compositions, i. e. no mixing of streams with different 
concentrations takes place:  
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where CS is the concentration (mole fraction) of the desired component 
contained in the S th stage feed flow. Primes (′ and ″) denote the enriched 
and depleted flows, respectively, and the symbols without primes pertain to 
the feed flow. R is the abundance ratio 
 

)1/( CCR −=      (4) 
 

As it has been shown in [1-3], the non-mixing conditions (2-3) for a 
desired isotope result in a most efficient cascade in which the total flow, and 
hence, the total number of separating elements, is minimized. In other 
words, in the particular case of “fine separation” of binary isotope mixtures, 
an ideal cascade is the standard with which all other cascades must be 
compared. 

To calculate the total flow for the ideal cascade, the following 
expression for the total number of separating units in a cascade is applied: 

 

U
Unnid δ

=≡
∆

min      (5) 

 
where idn  - is the total number of separating units in the ideal cascade, 

)()()( FWP CFVCWVCPVU −+=∆    (6) 

C
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−

−=
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ln)12()(     (7) 

P, W, F - are the product, waste, and feed flows, respectively,  
CP, CW, CF - are the concentrations of a desired isotope in the product, 
waste, and feed flows, respectively, 

8
)1( 2−

=δ
qGU     (8) 

"' / RRq =  - is the overall separation factor of a single separating unit of 
the cascade. 

Note that Eq. (5) has been derived with the assumption that the 
separation factor q does not depend on concentration, i.e. it is the same for 
all separating units of the cascade. Thus, the numerator in Eq. (5) depends 
on neither the nature of the separation process being used nor the scheme 
followed in the stage connection, but it merely depends on the external 
parameters of the cascade P, W, F, CP, CW, CF. This value is called the 
“separation performance” of a cascade, and one may consider ∆U as an 
external load. 

The denominator in the same formula, defined by Eq. (8), is called 
the “separative power” of a unit and depends on the separation properties of 
a single element. Thus, for a “fine” separation of binary isotope mixtures, 
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the process of optimization is reduced to the definition of the operation 
parameters providing maximum value of separative power δU. 

If in Eq. (6) the flows W and F are expressed by P, using the balance 
equation for a cascade as a whole, it can be rewritten as follows: 
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Since the value of ∆U characterizes the useful separation work of a 
cascade per time unit, the function Φ(CP, CF, CW) can be interpreted as the 
specific separation work under the condition of defined concentration of 
desired isotope in the ingoing and outgoing flows. In the theory of isotope 
separation Φ(CP, CF, CW) is called the “value function”. The metric for 
measuring the separation of binary mixture of uranium isotopes is the 
“separation work unit” (SWU) [4]. A SWU is the work that was spent to 
produce of 1kg of uranium with the enrichment of the uranium-235 isotope 
that is equal to a quantitative change of unity in the value function in the 
separation process. For example, the production of 1kg of uranium-235 with 
the enrichment of 30% from natural uranium containing uranium-238 of 
99.289% concentration and uranium-235 (0.711 %) requires 4.3 SWU on 
the condition that the concentration of uranium-235 in the waste flow is 
0.2 %. The price of SWU is determined on the basis of the cost of isotope 
separation production and plays a crucial role in the evaluation of the 
economic efficiency of a separation process. 

Relations (6)-(8) may be obtained by another, more formal method 
which uses the axiomatic approach suggested by Dirac-Peierls [1]. This 
approach exploits three main conditions. The first condition defines the 
value of an isotope mixture as production of an extensive value (the number 
of moles of a separating mixture) to an intensive one (a “separation 
potential” V(C), depending only on isotope composition). According to the 
second condition, it possible to attain the non-mixing condition at each point 
in the cascade where streams merge. The last condition defines a kind of a 
separation potential V(C). Using the above conditions, suppose that stage 
number S of a cascade is separating LS moles with a concentration of the 
desired isotope CS into SS Lθ  moles with a concentration '

SC  and 

SS L)1( θ−  moles with a concentration "
SC . Here Sθ  is the cut of the stage. 

The separative power of the stage can now be written as: 

(10) 
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After summing Eq. (11) over all stages of the cascade and taking into 
account that in the ideal cascade the separative powers of the stages are 
fully used, one can get ∑

S
SdU  from the left side of the equation. Summing 

up the right side of equation (11), it is necessary to assume that the flows in 
the ideal cascade are connected without mixing concentrations. This means 
that during the summing up, all members describing the interstage flows 
disappear except for three external ones with their own concentrations. As 
the result, one will get  

 

∑ −+=
S

FWP
S CFVCWVCPVdU )()()(   (12) 

 
Thus, on the left side of the Eq. (12), in the absence of mixing losses, 

the sum of stage separative powers obtained; and, on the right side, the 
separative power considering an ideal cascade as a single unit is formulated. 
This allows us to write 

 
)()()( FWP CFVCWVCPVU −+=∆    (13) 

 
Hence, the only problem to solve is a separation potential V(C). 

Formally, as it follows from Eqs. (12) and (13), the function V(C) may be 
introduced in an arbitrary form, but, from a practical point of view, the 
choice of a function V(C) should produce a form of the stage (element) 
separative power that is independent of the mixture concentrations. If all the 
separating units (elements) in the cascade have identical parameters, then its 
separative power may be presented as  

 
UndU SS δ=     (14) 

 
where nS is the number of separating elements connected in parallel; δU is 
the separative power of an individual element not depending on 
concentration. 
So, for the cascade as a whole, one can write 

 
UndU id

S
S δ=∑     (15) 

 
In the Dirac-Peierls approach, the question whether the value of nid is 

minimal or not, remains open. 
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The expressions for the stage separative power and a separation 
potential are usually found by solving the functional equations obtained 
from Eq. (15) 

 
constCVCVCVLdU =−−+= )]()()1()([ "' θθ .  (16) 

 
For the symmetrical case (θ = 0.5), the separative power is identical 

to expression (8) as well as a separation potential defined by Eq. (7), if this 
function has a zero value for C = 0.5. Similar approaches exist for the 
definition of separation potential and separative power for the ideal cascade 
designed from asymmetric elements (θ ≠ 0.5). 

 
Large separation factors at cascade stages 

The theory of ideal cascades for the case when the degree of the 
desired isotope enrichment per stage unit is not small and the heads and tails 
separation factors are equal to each other 

 
q=β=α     (17) 

 
has been developed in [1]. 
Here α, β are the heads and tails separation factors )/,/( "' RRRR =β=α . 
Equation (17) means that each separating unit in such a cascade must be 
operated symmetrically. 

In theory, it was also assumed that the overall separation factor per 
stage q = αβ is independent of the mixture concentrations and cut θ. 

The relation (5) for such a cascade is still valid, the function V(C) is 
analogous to (7), and the element separative power is written as  

 

q
q
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−
=δ     (18) 

 
It is easy to make sure that the analogous result can be obtained by 

solving the functional equation (16) for arbitrary values of an overall 
separation factor q in the cascade designed from the symmetrical elements 
satisfying condition (17). In [1], the problem of the optimal parameters in 
this cascade is not addressed. 

Later, the principal possibility to construct ideal cascades designed 
from asymmetrical elements with arbitrary enrichment at each stage was 
demonstrated in [5-7]. However, the theory developed does not yield a 
relation such as (5) to evaluate the number of separating elements nid. The 
problem of the optimal cascade parameters (in the sense of the minimum 
total flow) in this cascade still remains unsolved.  
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The solution of the functional equation (16) derived in [7] for the case 
of α ≠ β was written as follows: 
 

C
C

a
C

b
CfCV
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−
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),( βαfLdU =      (20) 
 
where 

1
ln)1(ln)1(

−αβ
α−β−β−αβ

=a     (21) 

1
ln)1(ln)1(

−αβ
β−α−α−βα

=b     (22) 

f(α, β) is an arbitrary function. 
From Eqs. (19, 20), one can see that separation potential depends on either 
the mixture composition or the stage heads and tails factors, α and β, and on 
any choice of the arbitrary function f(α,β) that contradicts the first condition 
of the Dirac-Peierls axiomatic approach. This contradiction makes use the 
expressions obtained for the separative power and separation potential 
unacceptable for practical calculations [7,8]. First, such separation potential 
will depend on the separation characteristics of a single stage in the cascade. 
In particular it means that two ideal cascades, designed from elements with 
non-identical separation factors α and β and provided with the same feed 
flow rates and isotope compositions, have to possess at the output the 
product and waste flows with similar flow rates and separation 
compositions. In other words, two ideal cascades executing the same 
separation program have to possess the same separation power. However, 
calculations with Eqs. (19)-(22) lead to different values of the separative 
power for these two cascades [7]. Second, a use of Eq. (19) for calculating 
the separative power of the ideal cascade constructed from asymmetrical 
elements with variable separation factors will be impossible. It is due to 
impossibility to get an expression for evaluation the number of separating 
elements in a cascade for solving this or that practical problem. 
In [7,8], attempts to remove the above contradictions were suggested. One 
suggestion was to allow the separative power of a single stage in the 
cascade to be dependent on the composition of the isotopic mixture. At the 
same time, it was suggested that the separation potential be allowed to have 
the classical form as given in equation (7). With these assumptions, it can 
easily be shown [8] that the expression for the separative power will have 
the following form: 
 

])1([ bCCaLdU +−=    (23) 
 
where the coefficients a and b are defined by the expressions (21, 22). 
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As in the case of the "fine" separation and the symmetrical operation 
mode of separating stages in the cascade, Eq. (23) gives the formula (18). 
Thus, for uranium isotope enrichment (C<<1), the formula (23) will be 
written in the following form [8] 
 

{ ]}ln)]1(1ln[ qqLdU θθ +−+=    (24) 
 

where 
1
1

−
−

=
q
βθ . 

As one can see in this case, the separative power does not depend on 
concentration. The analysis of the expression (24) has shown that the 
specific stage separation power (dU/L) for the fixed value of q has its 
maximum value with respect to θ (or β). The optimum values of θ and β 
will be defined as 
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As a result, the maximum value of the specific stage separative power will 
be calculated from the formula 
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It is important to note that the value of the cut corresponding to the 
symmetric regime of a stage (an element)  
 

1
1
+

=
qsymθ      (27) 

 
differs from θopt calculated from Eq. (25). Fig. 1 demonstrates the growth of 
this disagreement with q. 

In a general case, the condition αS = βS+1 takes place in the ideal 
cascade. It means that the values of θ and dU/L vary over the cascade 
stages. As a result, it is impossible to design the ideal cascade with the 
stages operating in the optimum regime. 
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Fig.1. The cut versus a value of an overall separation factor in 
1 - optimum and 2 - symmetric cases. 

 
 

Besides, the formula (23) is of little help when solving the major 
problem of isotope separation production - that is for the evaluation of the 
number of separation elements in the ideal cascade for production of the 
necessary amount of the final product at a given concentration of the key 
component. Note that in the case of large separation factors at the cascade 
stages, the question whether the ideal cascade is the best one in the sense of 
the total flow (as it was in the case of a small separation factors) has no 
definite answer. 

 
Optimum and ideal cascades 

For the first time, the conclusion that the concepts of "the ideal 
cascade" (nomixing concentrations in merge flows) and "the optimum 
cascade" (i.e. the cascade with the minimum number of separation 
elements) in a general case may not coincide was made in [10]. The special 
calculation research has shown that the ideal and optimum cascades 
coincide by a total flow at any enrichments at a separation stage (that is 
equivalent to the arbitrary values of an overall separation factor q), when 
condition (17) is valid for each separation element, and the value of q does 
not vary over the length of the cascade [10-12]. 

A quite different picture takes place if the condition of the symmetric 
work of separation elements in a cascade is not fulfilled. In this case, at the 
same value of a separation factor at each stage, the total flow in the ideal 
cascade can exceed that in the optimum cascade, in some cases for more 
than 50 %. In other words, in any cascade designed from asymmetrical 
elements, the no-mixing condition expressed by the relation αS = βS+1,  
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S = 1,2,…,N-1, where S is the stage number, and N is the total number of 
elements in a cascade, does not coincide with the condition of the minimum 
total flow. 

 

 
 

Fig.2. The total flow in a cascade versus a cut number at its first stage for 
1 – an ideal and 2 – optimum cascades. 

 
 

In Fig. 2, two curves representing the total flow versus the cut 
number at the first stage of the ideal and optimal cascades for the fixed 
overall separation factor, product flow rate, and the concentration of a key 
component in the product flow (q = 1.59, CF = 0.711 %, CP = 4.4 %,  
CW = 0.45 %, P = 1 g/s) are shown. In the ideal cascade, the total flow has 
its minimum value for the cut number corresponding to the symmetrical 
separation elements and can be calculated by expression (27). It is explained 
by the fact that in any asymmetrical case (β1 ≠ α1) a cut number is changing 
over cascade stages. So, if the maximum value of the specific stage 
separation power is provided by the choice of the cut at the first stage, the 
value of separative power at the next stage with changing cut in contrast to 
the previous one will be lower. Finally, the average value of the specific 
stage separation power will occur lower than that of the one calculated from 
the formula (26). In other words, only the ideal cascade designed of 
symmetric separation stages is able to provide full use of separation 
performance of all its elements and the total flow in such a cascade will be 
minimum one.  

The computational experiments have demonstrated that the total flow 
in a cascade made of asymmetric elements can be minimized by the special 
choice of the θ(S) and L(S) distributions that will smoothen the serrated 
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distribution of the specific separation power over the cascade stages and 
bring it closer to the value calculated by Eq. (26) [12]. 

After the numerous computational experiments, we came to the 
conclusion that even in the case of arbitrary separation factors at the cascade 
stages the separation performance of a cascade as a whole may be evaluated 
by the classic formula of separation potential V(C). Despite this 
convenience, the theory does not allow to optimize the parameters of each 
separation stage of the cascade. However, the process of the total flow 
minimization will entail a search that will lead to a set of optimal stage 
parameters. 

 
SEPARATION OF MULTICOMPONENT MIXTURES 

The practical requirements for evaluating the efficiency of 
multicomponent isotope mixtures separation requires introducting of the 
efficiency criteria analogous to (7) and (8). In this case, the difficulties with 
defining for the separative performance of a separation unit are connected 
with the problem that the no-mixing condition in a cascade is not applicable 
because it is not usually possible to match more than one concentration in a 
stream. The first attempts to introduce the expressions for dU and V(C1, C2, 
…, Cm) in the case of multi-isotope mixtures (see e.g. [13-16]), have been 
made to solve the functional Eq. (16) or to extend the theory of binary 
mixture separation in the multi-isotope separation case. Because the results 
obtained in all the papers quoted are practically the same, we will analyze 
only one of them [14]. 

Let us consider the separation stage with one input and two withdrawal 
streams intended for multicomponent isotope mixture separation (Fig.3) 
where m is the number of components. 

 
 
 
 
 
 
 
 

 
 
 

Fig.3. The separation stage for multi-isotope mixture separation. 
 
 

If the “value” of a mass unit for a multicomponent isotope mixture is 
defined as V(C1, C2, …,Cm), the useful separation work for a time unit 
analogous with the case of a binary mixture can be written as follows  
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The case of low enrichment at cascade stages 
Assuming that enrichment at each cascade stage is low (or in other words a 
separation factor for a pair of components of a separating mixture 

"

"

'

'

/
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i

j

i
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C
C
Cq =  is close to unity), one can expect that the change in 

concentrations at a separating element of a cascade will be small [17] 
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where ijij qln=ε . 
Expanding the Eq. (28) into the Taylor’s series near the point (C1,…,Cm), in 
m dimensional space, retaining only the second order terms, and taking into 
account the balance equation for each component of the separating mixture  
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as well as using Eqs. (29) and (30), one will get the following equation: 
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The expression in the square brackets is the differential operator acting on 
the function V(C1, C2, …, Cm). For many separation processes (including 
gas centrifugation), one can present the values of relative enrichment 
coefficients can be presented in the form 
 

)(0 ijij MM −ε=ε     (33) 
 
where Mi, Mj are masses of i th and j th components, respectively; ε0 is the 
enrichment coefficient for a unit mass difference. 
Assuming that ε0 depends on neither the mixture composition, nor cut θ, Eq. 
(32) can be rewritten as 

),...,()(
2

)1(
1

2

1 1

2
0

m

m

i

m

j i
jiji CCV

C
CkC

L
dU 







−
= ∑ ∑

= = ∂
∂εθθ

 (34) 

 
where kij = Mi – Mj. 
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From the physical point of view, the separative power of the separating 
element is its own characteristic that is defined by its constructive and 
physical peculiarities, and consequently, it should not depend on the mass 
structure and concentrations of mixture components. This means that the 
second factor in Eq. (34) should be a constant, which without loss of 
generality can be taken as unity. Therefore, Eq. (34) is split into two 
equations: 
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For the following boundary conditions 
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which means that the production of a pure isotope (with the concentration of 
100 %) requires infinite separation work, the solution of equation (37) is 
given by 
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The solution of (38) for any m  is proved by mathematical induction. 

Thus, the separation potential (38) is a linear combination of the 

terms 
j

i
ji C

C
CC ln)( − , each of which, from the thermodynamic point of 

view, characterizes the level of the “order” in a concentration distribution 
between the i th and j th mixture components (i = 1,…m; j = 1,…,m) [18]. 

The question now is whether the results obtained have real practical 
meaning. One can easily derive that, for any ordinary cascade used for 
separating of a multicomponent isotope mixture, the following inequality 
will hold 
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Here F

i
W
i

P
i CCC ,,  are the concentration of the i th component in the 

product, waste, and feed flows, and the functional )CV(
r

 is defined by the 
expression (38). 

The right side of the inequality (39) characterizes the separative 
power of some abstract cascade, which operates in the regime of no-mixing 
of concentrations in the points of merging flows in the cascade. However, 
because in any multicomponent separation cascade, concentrationsare 
mixed, the total separative capacity of all the cascade stages will always be 
more than the separative power of such a cascade. In other words, the 
separation potential obtained from Eq. (36), contrary to the case of a binary 
mixture, does not allow to evaluate the total number of elements in the 
cascade. To do this, it is necessary to solve a specific separation problem 
and, hence, it is not applicable as a cost characteristic of a manufactured 
isotope product. Nevertheless, it is believed that the potential (38) can be 
useful to assess the separation work at the consecutive steps of the multi-
phase separation campaigns. 

 
Arbitrary separation factors at cascade stages 

A more basic approach to the evaluation of the multicomponent 
separation performance results from the theory of a multicomponent 
separation cascade which is analogous to the two-component “ideal 
cascade”. The theory of such a cascade was established by De La Garza et 
al. [19,20] and then developed in detail in a number of papers [21-32]. A 
multicomponent analogy of an ideal cascade for binary isotope mixture 
separation is a cascade in which the abundance ratio between the n th and (n 
+ k) th components Rn,n+k = Cn/Cn+k (n and n + k are designated as the “key” 
components) is matched whenever two streams come together; i.e. at all the 
inter-stage connections and feed points. Such a cascade is referred to as a 
matched abundance ratio cascade (MARC). Hence, for MARC one can 
write: 

 
)1()()1( ,,, +′′==−′ +++ SRSRSR knnknnknn   (40) 

 
where S is the current number of a stage in the cascade. 

The properties of MARC allow it to be used for solving the problem 
of introduction of “a separative power” and a separation potential for the 
multi-isotope mixtures. For the first time, the expressions for the “separative 
power” and the “separation potential” for the common case of arbitrary 
overall separation factors qij and without limitation on the number of 
components have been obtained in [33]. In that paper a counterflow 
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symmetric (for a chosen pair of components) MARC consisting of N steps 
and intended for separation of a m-component isotope mixture was 
examined in detail. 

For many separation processes, a stage separation factor for a pair of 
components can be expressed as a function of a difference between their 
molecular masses Mk - Mi. For example, in the case of gas centrifugation, it 
is appropriate to use the following approximation [28] 

 
ik MM

ik qq −= 0      (41) 
 

where Mk, Mi are molecular masses of components with numbers k and i, q0 
is the overall separation factor per unit mass difference. 
Thus, in the case of the isotope separation by gas centrifuges 
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+  can be transformed into the expression [33] 
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where qj,n+1 is the overall stage separation factor for a pair of components 

with the numbers j and n+1 and 
2
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As a result, the total flow in MARC ∑
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 was obtained as 
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If productivity (G) value is identical for all the elements in the 

cascade, the expression for the total number of separating units in the 
cascade per unit of the product flow may be written as 
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where 
1,1, ln),( ++ = nnjnnjj RCRCV     (45) 
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n
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j GU γ
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     (46) 

 
It is quite obvious that δUj can be interpreted as the separation 

performance for the j th component of the separated mixture and Vj may be 
identified as the partial separation potential referring to the component with 
the number j. 

The final expression for δUj will be as follows 
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The numerator in (44) does not depend on the characteristics of the 

single separating element. However, it does depend on the values of 
F

nn
W

nn
P

nn RRR 1,1,1, ,, +++  and the mass differences of the components iMM −*  

and nn MM −+1 . 
Thus, in the case of a multi-isotope separation, to obtain the optimal 

parameters of a single stage in the cascade, it is necessary to minimize the 
linear combination of the value 1/δUj for all the components. For the case of 
a “fine” or “difficult” separation (q0 ~ 1), the expressions (46) may be 
transformed as 
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can be considered as the value function for a multicomponent isotope 
mixture and the value of 8/2

0εG  can be interpreted as the separative power 
of a single element. 

The examples of the successful application of the developed 
efficiency criterion for optimization of the cascades and single gas 
centrifuges for separation of multicomponent isotope mixtures, have been 
presented in [33,34]. 
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CONCLUSIONS 
1. Until now, the theory of isotope separation in cascades has not reached 

its final form. Important questions arising from practical problems still 
remain unanswered. The main reason is the difficulty with defining the 
best (standard) cascade in the general case of arbitrary enrichment at 
cascade stages.  

2. An important step in defining such a standard cascade was fixing the fact 
that an ideal (non-mixing) cascade and an optimal cascade (with 
minimum number of separating elements) are coincident in the sense of 
total flow for any enrichments at cascade stages only in the case of the 
symmetric regime of their exploitation.  

3. The formulas to calculate “the separative power” and “the separation 
potential” for a multi-isotope separation in a cascade with arbitrary 
separation factors of its units are proposed. In contrast with numerous, 
previously applied approaches, the theory developed here allows to 
evaluate the number of separating units in a cascade.  
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