PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Speciation of arsenic in groundwater and technologies for removal of arsenic in drinking water in the spiro tunnel bulkhead, Park City, Utah, USA

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Application of an anion exchange resin column was performed to speciate of arsenic (III) and (V) in drinking water. This methodology was used to analyze water samples collectioned from the study of arsenic removal by two technologies, reverse osmosis membrane filtration and chemical coagulation/ filtration in pilot scale in anticipation of EPA=s new arsenic drinking water standard of 10 µg/L takes effect 2006. This EPA treatment technology project was to collect data on the performance of two existing water treatment processes to remove arsenic on pilot scale. Total arsenic concentrations were reduced by reverse osmosis from an average 60 µg/L in the source water to less than 1 µg/L, and chemical coagulation reduced total arsenic from an average 60 µg/L to 4 µg/L. The work reported here will focus on obtaining accurate readings for arsenic valence states (III) and (V), given the Edwards [17] method for arsenic speciation. Separation of arsenic As(III) and As(V) by speciation in field samples, was performed using an anion exchange resin column. The chloride interferences that affect the determination of 75Arsenic from chloride (35 isotope) molecular species (40Ar35Cl), were corrected using chloride measurements in all samples using equation: [75As(corr)] = [75As] - 3.127 × {[40Ar37Cl] - 0.815 [82Se]}. The use of sulfuric acid in the preservation procedure created interferences with ICP-MS in the range one ěg/L of arsenic. The problem of interference in determination of isotope 75As is due to sulfur 34S isotope which is present in sulfate. The (34S isotope, 4.21%) forms the polyatomic species (mass 75) (40Ar34S1H) and species (mass 74) (40Ar34S) which interferes with the determination of 75As isotope. The method detection limit, MDL, for arsenic for ICP-MS was determined to be 0.1 µg/L. Our spiked matrix recoveries, spiked blank samples, and reference materials deviate only a few percents from the listed true values.
Rocznik
Tom
Strony
71--83
Opis fizyczny
Bibliogr. 26 poz., tab.
Twórcy
autor
  • State of Utah Department of Health, Environmental Chemistry, 46 N. Medical Drive, Salt Lake City, UT 84113, USA
  • Faculty of Technology and Chemical Engineering, University of Technology and Agriculture, Bydgoszcz, Poland
autor
  • State of Utah Department of Health, Environmental Chemistry, 46 N. Medical Drive, Salt Lake City, UT 84113, USA
autor
  • State of Utah Department of Health, Environmental Chemistry, 46 N. Medical Drive, Salt Lake City, UT 84113, USA
  • Cartwright, Olsen and Associates, LLC, 8324 16th Ave South, Minneapolis, MN 55425-1792, USA
Bibliografia
  • [1] K. Christen, Environ. Sci. Technol., 2000, 34(7), 291A.
  • [2] A. Chatterjee, D. Dass, B. K. Mandel, T. R. Chowdhury, G. Samanta, D. Chakraborti, Analyst, 1995, 120, 643-650.
  • [3] W. Lepkowski, Chem. Eng. News, 1998, November 16, 27-29.
  • [4] W.P. Tseng, Environ. Health Prospect., 1977, 19, 109-119.
  • [5] C.J. Chen, C.W. Chen, M.M. Wu, T.I. Kuo, Br. J. Cancer, 1992, 66, 888-892.
  • [6] M. Berg, H.C. Tran, T.C. Nguyen, H.V. Pham, R. Schertenleib, W. Giger, Environ. Sci. Technol., 2001, 35, 2621.
  • [7] K. Christen, Environ. Sci. Technol., 2001, 35(7), 286A.
  • [8] USA MCL will be 10ppb on January 2006. Is 50 ppb now.
  • [9] Health and Welfare Canada. Guidelines for Canadian Drinking Water Quality, Arsenic, August 1992.
  • [10] K. Christen, Environ. Sci. Technol., 1999, 33(9), 188A.
  • [11] M. Karim, Water Res., 2000, 34 (1), 3040310.
  • [12] A.H. Smith, M. Goycolea, R. Haque, M.L. Biggs, Am. J. Epidemiol., 1998, 147(7), 660-669.
  • [13] W.R. Cullen, K.J. Reimer, Chem. Rev., 1989, 89, 713-764.
  • [14] R.Y. Ning, Desalination, 2002, 143, 237-241.
  • [15] J.J. Waypa, M. Elimelech, J.G. Hering, J.AWWA (October), 1997, 89, 102-114.
  • [16] Batelle, February 2000. Evaluation of Treatment Technologies for the Removal of Arsenic from Drinking Waters: Iron Removal. Prepared for EPA.
  • [17] M. Edwards, S. Patel, L. McNeill, H. Chen, M. Frey, A.D. Eaton, R.C. Antweiler, H.E. Taylor, J.AWWA (March), 1998, 90, 103-113.
  • [18] Copies of the ETV Protocol for Equipment Verification Testing for Arsenic Removal dated March 30, 2000 (NSF Report # 01/25/EPADW395) electronic copy is available: NSF web site: http://www.nsf.org/etv.
  • [19] NSF Report No. 01/20/EPADW395, electronic copy is available: NSF web site: http://www.nsf.org/etv.
  • [20] Copies of the ETV Protocol for Equipment Verification Testing for Arsenic Removal dated March 30, 2000 (NSF Report # 01/26/EPADW395) electronic copy is available: NSF web site: http://www.nsf.org/etv
  • [21] NSF Report No. 01/23/EPADW395, electronic copy is available: NSF web site: http://www.nsf.org/etv.
  • [22] M. Edwards, J. AWWA (September), 1994, 89, 64-78.
  • [23] A. Eaton, H.Ch. Wang, J. Northington, Analytical Chemistry in Drinking Water [Project No. 914], J.AWWA, 1998.
  • [24] W.H. Ficklin, Talanta, 1982, 30, 371-373.
  • [25] D. Clifford, L. Ceber, S. Chow, Proceedings of the XI AWWA WQTC, 1983.
  • [26] G.D. Sledge, Proposed Arsenic in Drinking Water Rule Regulatory Impact Analysis, EPA 815-R-00-013, Chapter 6, June 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BATA-0007-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.