PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Conceptual processes for zeolite membrane based hydroisomerization of light alkanes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A zeolite membrane reactor concept for the hydroisomerization of n-hexane was applied experimentally. The results indicate separation selectivities with factors close to 20 for n-, mono- and dibranched components in a gas mixture, as well as nhexane conversions up to equilibrium values. The research octane number calculated for the product stream of the different experiments indicates numbers as high as 85. For the hydroisomerization of C7 alkanes, a concept of two reactors and a zeolite membrane was proposed and an industrial scale process was simulated. A high octane number product containing tribranched, and a part of dibranched, C7 isomers is predicted. Although the product yield was calculated to be only 24% of the process feed, there was an improvement in a research octane number from 57 for the feed to 92 for the product. Both processes show that the application of zeolite membranes in the hydroisomerization of light alkanes can results in a octane number higher, than in the "state of the art" processes. The membrane unit, however, is the main cost driver of the processes, thus, the economical feasibility of industrial scale light alkanes hydroisomerization processes using zeolite membranes is restricted to its further commercial development.
Rocznik
Tom
Strony
18--28
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
  • Laboratory of Applied Organic Chemistry and Catalysis, DelftChemTech, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
autor
  • Laboratory of Applied Organic Chemistry and Catalysis, DelftChemTech, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
autor
  • Laboratory of Applied Organic Chemistry and Catalysis, DelftChemTech, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
  • Laboratory of Applied Organic Chemistry and Catalysis, DelftChemTech, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
Bibliografia
  • [1] T.G. Kaufmann, A. Kaldor, G.F. Stuntz, M.C. Kerby, L.L. Ansell, Catalysis Today, 2000, 62, 77-90.
  • [2] S.T. Sie, Ind. Engng. Chem. Res., 1993, 32, 403-408.
  • [3] K.-J. Chao, H.-C. Wu, L.-J. Leu, Appl. Catalysis A: General, 1996, 143, 223-243.
  • [4] F.G. Ciapetta, R.M. Dobres, R.W. Baker, in: Catalysis, vol. VI, P.H. Emmett, New York, Reinhold Publishing Corporation, 1958, p. 495-692.
  • [5] H. van Koningsveld, J.C. Jansen, H. van Bekkum, Zeolites, 1990, 10, 235-242.
  • [6] L. Gora, J.C. Jansen, F. Kapteijn, Th. Maschmeyer, Book of Abstracts of the International Workshop on Zeolitic and Microporous Membranes, The Netherlands, 2001, p. 89-90.
  • [7] M.L. Maloncy, J.C. Jansen, Th. Mashmeyer, Book of Abstracts of the Annual Symposium on Zeolitic Materials, Belgium, 2001, p. 40-41.
  • [8] C.L. Flanders, V.A. Tuan, R.D. Noble, J.L. Falconer, J. Membr. Sci., 2000, 176, 43-53.
  • [9] E.J.W. Buijsse, The first results of the catalytic membrane reactor on hydroisomerization of C6, Graduation report, DelftChemTech, TUDelft, The Netherlands, 2001.
  • [10] C.G. Vayenas, P.G. Debenedetti, I. Yentekakis, L.L. Hegedus, Ind. Engng. Chem. Res. Fundam., 1985, 24, 316-324.
  • [11] S.G. Neophytides, Chem. Engng. Sci., 1999, 54, 4603-4613.
  • [12] R.K. Sinnott, Coulson and Richardson Chemical Engineering Vol. 6, Chemical Engineering Design, (3rd ed.), Oxford: Butterworth-Heinemann, 1999.
  • [13] J. Caro, M. Noack, P. Kölsch, R. Schäfer, Microporous and Mesoporous Materials, 2000, 38, 3-24.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BATA-0007-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.