

Ars Separatoria Acta 1 (2002) 79-86

www.ars_separatoria.chem. uni.torun.pl

SELECTIVE RECOVERY OF LITHIUM FROM SEAWATER USING A NOVEL MnO₂ TYPE ADSORBENT

Kazuharu YOSHIZUKA^{1*)}, Kenji FUKUI²⁾ and Katsutoshi INOUE²⁾

¹⁾Department of Chemical Processes and Environments, The University of Kitakyushu, Hibikino 1-1, Kitakyushu 808-0135, Japan ²⁾Department of Applied Chemistry, Saga University, Honjo 1, Saga 840-8502, Japan

ABSTRACT

A novel ?-type manganese dioxide (?- MnO_2) adsorbent has been developed for selectively recovering Li⁺ from seawater. This adsorbent can be prepared from spinel-type lithium di manganese tetra-oxide (Li Mn_2O_4) using ion exchange of Li⁺ by hydrogen ion. In batch adsorption, ?- MnO_2 adsorbent can effectively adsorb Li⁺ at elevated pH (like seawater; pH=8.1) with quite high selectivity for Li⁺ vs. Na⁺ (molar ratio of Li⁺/Na⁺ exceeding 800). In chromatographic separation, Li⁺ can be effectively adsorbed on the adsorbent packed into column, while Na⁺ is only scarcely adsorbed. In elution stage, Li⁺ can be concentrated more than 75 times compared to its initial concentration in the feed solution of adsorption stage, while little Na⁺ was eluted. The molar selectivity coefficient of Li⁺/Na⁺ to 2300 can be achieved.

Keywords: adsorption, recovering lithium, seawater, manganese dioxide

INTRODUCTION

Since many valuable components are dissolved in seawater such as gold, uranium, lithium etc., the recovery of such components has been noticed from viewpoint of their absolute contents [1]. The concentrations of these elements in seawater are in general quite low, except for potassium, bromine, magnesium and sodium chloride. Since the concentration of lithium in seawater, a target element in this study, is quite high (0.18 ppm in average [1]), the recovering of lithium from seawater may secure resources for production of large-capacity rechargeable batteries, light aircraft alloy, * Corresponding author 79

Yoshizuka, et.al.

nuclear fusion fuel etc. In order to develop an effective process of recovering of lithium by adsorption, it is important to develop adsorbents with high selectivity for Li^+ vs. Na^+ (> 10000ppm).

In this study, ?-type manganese dioxide (?- MnO_2) has been studied as a novel type adsorbent for lithium recovering from seawater. This adsorbent can be prepared by elution of lithium from spinel type lithium dimanganese-tetra-oxide (LiMn₂O₄) with aqueous hydrochloric acid. Fig. 1 shows the schematic diagram of adsorption and elution of lithium in ?- MnO_2 adsorbent. Since ?- MnO_2 consists of both ion-exchangeable pillaredmanganese layer and structural MnO_2 layer, H⁺ can be exchanged by Li⁺ without breaking the crystal structure because pillared-manganese can support MnO_2 layer[2-4].

Fig. 1. Schematic diagram of adsorption and elution mechanism of Li^+ in ?-MnO₂ adsorbent.

We have investigated the adsorption of Li^+ from the aqueous solution containing high concentration Na^+ at elevated pH. Moreover, the performance of column separation and concentration of Li^+ from model seawater was investigated.

EXPERIMENTAL Preparation of ?-MnO₂ adsorbent

Powders of Mn_3O_4 (5.00 g, 0.022 mol) and LiOH·H₂O (1.403 g, 0.033 mol) were mixed and ground for 15 min. Here, we set the mixing ratio of powders to molar ratio of Mn/Li = 2. The mixture was sintered at 425°C for 5 h with an electric oven. After slow cooling at room temperature for 1.5 h, the sintered mixture was mixed and ground again for 15 min. The mixture was also sintered at 500°C for 5 h with an electric oven. After slow cooling

in an electric oven for 12 h, spinel type $LiMn_2O_4$ was obtained as an intermediate product. Reaction scheme is as follows:

 $3\text{LiOH} + 2\text{Mn}_3\text{O}_4 + [\text{O}_2]$? $3\text{LiMn}_2\text{O}_4 + 3/2\text{H}_2\text{O}$ (1)

This product was sieved within 300 μ m to 150 μ m using standard sieve. The product was treated 5 times for overnight with 1.0 mol/dm³ HCl solution to obtain ?-MnO₂ adsorbent. To keep the spinel type of crystal structure, we treated the powder of LiMn₂O₄ with aqueous HCl solution. Here, we set the volume of HCl solution to keep more than 40 of molar ration of H⁺ to Li⁺. We observed the crystal structure of ?-MnO₂ after each acid treatment with X-ray powder diffractometer (Rigaku XRD-DSC-X II). The content of Li⁺ in ?-MnO₂ was calculated by the summation of the concentration of Li⁺ in each HCl solution treated, which concentration was measured by an atomic absorption spectrophotometer (Perkin-Elmer AA100)

Batch adsorption of lithium

The adsorbent (20 mg) was shaken with 0.1 mol/dm³ NH₄Cl - 0.1 mol/dm³ NH₄OH aqueous buffer solution (10 cm³) of various pH containing different concentrations of Li⁺ and Na⁺. All batch experiments were carried out at 30 °C for 2 h. Li⁺ and Na⁺ concentrations before and after equilibria were measured by AAS.

Adsorption amount of metals on adsorbent, $q_{\rm M}$ [mmol/g], is calculated by:

$$q_{\rm M} = (C_{\rm M0} - C_{\rm M}) \cdot L / w \ ({\rm M} = {\rm Li}^+, {\rm Na}^+)$$
 (2)

where C_{M0} and C_M are initial and equilibrium concentrations of M ions in the aqueous phase [mmol/dm³], *L* is volume of aqueous solution [dm³], and *w* is weight of adsorbent [g].

Chromatographic separation and concentration of lithium

Fig. 2 shows the column apparatus setup in this experiment. The adsorbent (500 mg) was packed into the column tube (10 cm), together with cotton and glass beads (1 mm diameter) to be sandwiched. Wet volume of the adsorbent in the column was 1.2 cm³. The aqueous solution was flow upward to the column with micro tube pump (EYELA VSP-3050W). Flow rate of the feed solution was 0.33 cm³/min. In the column adsorption stage, feed solution was 0.1 mol/dm³ NH₄Cl - 0.1 mol/dm³ NH₄OH aqueous buffer solution (pH = 8.1) containing both 40 ppm of Li^+ and $Na^{+-}([Li^+] = 5.7)$ $mmol/dm^3$, and $[Na^+] = 1.7 mmol/dm^3$, respectively). In the column elution stage, feed eluting solution was 1.0 mol/dm³ HCl solution. After break through of metal ions from the column in the adsorption stage, deionized water was fed owing to wash out the feed solution from the column. Then eluting solution was fed into the column of the adsorbent loaded Li⁺ and Na⁺ in the adsorption stage. The effluent was collected with a fraction collector (EYELA DC-1500), to measure the concentrations of metals by AAS.

(3)

Yoshizuka, et.al.

Bed volume, B.V., is calculated by:

 $B.V. = v \cdot t / V$

where v is flow rate of solution $[cm^3/min]$, t is supplying time of feed solution [min], and V is wet volume of adsorbent $[cm^3]$.

Fig. 2. Column adsorption apparatus.

RESULTS AND DISCUSSION Characteristics of ?-MnO₂ adsorbent

Fig. 3 shows XRD patterns of $LiMn_2O_4$ and 5 kinds of the intermediate ?-MnO₂ after each acid treatment with 1.0 mol/dm³ HCl solution. The closed circles in the figure indicate the peaks of spinel structure. Since the XRD pattern of each treated ?-MnO₂ is quite good agreement with spinel type LiMn₂O₄, the spinel crystal structure of ?-MnO₂ can be completely kept until 5 times treatment[5, 6]. The lattice constants of ?-MnO₂ are a = 7.99 Å, b = 8.04 Å, c = 8.03 Å, a = 89.9 °, β = 89.7 ° and ? = 89.9 °, respectively. The crystal structure of ?-MnO₂ is almost cubic system in which b and c axes expand a little.

96.4 % of Li⁺ was eluted from the LiMn₂O₄ by 5 times acid treatment, that is, the product of $?-MnO_2$ is Li_{0.036}Mn₂O₄.

Fig. 3. XRD patterns of $LiMn_2O_4$ and the intermediates ?-MnO₂ during the acid treatment.

Batch adsorption of lithium

Fig. 4 shows q_{Li} vs. acid treatment time of adsorbent. Progressing 4 times acid treatment of adsorbent, q_{Li} approaches toward the constant level, 1.5 mmol/g. This level of q_{Li} corresponds to commercial ion exchange resins of some alkali metals such as sodium ion.

Fig. 4. Adsorption amount of lithium on adsorbent, q_{Li}, vs. number of acid treatments of adsorbent; Metal conc.: Li⁺ (5 mmol/dm³), Na⁺ (5 mmol/dm³).
Fig. 5 shows a value of account action at activitien at activitien and the second se

Fig. 5 shows q_{Li} vs. pH of aqueous solution at equilibrium. This adsorbent has high adsorption ability of Li⁺ in high pH region. In particular,

Yoshizuka, et.al.

since the pH of seawater is 8.1, this adsorbent can effectively adsorb L_1^+ from seawater.

Fig. 5. Adsorption amount of lithium on adsorbent, q_{Li} , vs. pH of aqueous solution at equilibrium; Metal conc.: Li⁺ (5 mmol/dm³), Na⁺ (5 mmol/dm³).

Fig. 6 shows q_{Li} vs. molar ratio of Na⁺/Li⁺ in aqueous solution. Here, we cannot set the molar ratio of Na⁺/Li⁺ exceeding 800, because the solubility of sodium chloride in 0.1 mol/dm³ NH₄Cl - 0.1 mol/dm³ NH₄OH aqueous buffer solution is limited to 4000 mmol/dm³. Since no influence on Li⁺ adsorption was observed until 800 times higher concentration of Na⁺, it is elucidated that quite high selectivity for Li⁺ vs. Na⁺ (molar ratio of Li⁺/Na⁺ exceeding 800) can be achieved using this ?-MnO₂ adsorbent.

Fig. 6. Adsorption amount of lithium on adsorbent, q_{Li}, vs. molar ratio of Li⁺/Na⁺ in feed aqueous solution;
Metal conc.: Li⁺ (5 mmol/dm³), Na⁺ (5-4000 mmol/dm³).
Chromatographic separation and concentration of lithium

Fig. 7 shows the break through profile of Li^+ and Na^+ (metal concentration vs. B.V.). Breakthrough times of Li^+ and Na^+ are 4.8 h and 4 min, respectively. Li^+ can effectively adsorbed on the adsorbent packed into column, while Na^+ is scarcely adsorbed.

Fig. 7. Break through profile of Li⁺ and Na⁺.

Fig. 8 shows the elution profile of Li^+ and Na^+ from the metal-loaded adsorbent in the column adsorption stage. Li^+ can be concentrated up to 2980 ppm (429 mmol/dm³), while only 4.3 ppm (0.187 mmol/dm³) of Na^+ was eluted. From these results, it can be calculated that the molar selectivity of Li^+ vs. Na^+ can be achieved to 2300 times.

Fig. 8. Elution profile of Li⁺ and Na⁺.

Yoshizuka, et.al.

CONCLUSION

In order to selective recovery of lithium from seawater, we have studied the adsorption equilibria and chromatographic separation of lithium using a novel $?-MnO_2$ adsorbent. The following results can be concluded:

- (1) ?-MnO₂ can be prepared from spinel type $LiMn_2O_4$ using ion exchange of Li^+ by H^+ .
- (2) In batchwise adsorption, ?-MnO₂ adsorbent can effectively adsorb Li⁺ at elevated pH with quite high selectivity of Li⁺/Na⁺ over 800 molar ratio.
- (3) In chromatographic separation, the molar selectivity of Li⁺/Na⁺ to 2280 can be achieved.

Therefore, high and efficient separation and concentration of lithium from seawater can be achieved with studied ?-MnO₂ adsorbent.

Acknowledgments

The present work is supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan and by a grant from Kurita Water and Environment Foundation.

REFERENCES

- [1] E. Kunugita, J. H. Kim, I. Komasawa, Kagaku Kogaku Ronbunshu 1990, 16, 1045-1051.
- [2] K. Ooi, Y. Miyai, S. Katoh, H. Maeda, M. Abe, Chem. Lett. 1988, 989-992.
- [3] K. Ooi, Y. Miyai, S. Katoh, H. Maeda, M. Abe, Langmuir 1989, 5, 150-157.
- [4] K. Ooi, Y. Miyai, J. Sakakihara, Langmuir 1991, 7, 1167-1171.
- [5] W. Tang, H. Kanoh, K. Ooi, J. Solid State Chem. 1999, 142, 19-28.
- [6] A. Tanaka, H. Tamura, R. Furuichi, *Electrochem*. 1999, 67, 974-977.