PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Representation of a Built-up Area in the Numerical Simulation of Urban Flash Flooding

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper concerns numerical simulation of rapidly varied water flow resulting from flash flood propagation in a built-up floodplain. As the mathematical model of free surface unsteady water flow, the shallow water equations are assumed. In order to solve the equations, a numerical scheme of finite volume method is applied. For approximation of mass and momentum fluxes, the Roe method is used. Two methods of built-up area representation in a numerical model are presented in the paper - exclusion of the buildings from the numerical mesh of flow area and substitution of the buildings with high friction zones. In order to assess the quality of the numerical results obtained using both methods, the flow in the model city area with the building group representing a simplified town configuration was simulated. The numerical results were examined against the experimental data available due to laboratory depth measurements. The experiment of model city flooding was carried out in the hydraulic laboratory of Gdańsk University of Technology. Finally, the influence of the type of the boundary conditions imposed on building walls on simulation results is studied.
Twórcy
  • Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, ul. Narutowicza 11/12, 80-952 Gdańsk, Poland, mszyd@pg.gda.pl
Bibliografia
  • 1. Abbott M. B. (1979) Computational hydraulics: elements of the theory of free-surface flows, Pitman, London.
  • 2. Defina A., D’alpaos L. and Mattichio B. (1994) A new set of equations for very shallow water and partially dry areas suitable to 2D numerical domains, Proceedings of the special conference, Modeling of flood propagation over initially dry areas, Milano 29 June–1 July 1994, Italy.
  • 3. Guinot V. and Soares-Frazao S. (2006) Flux and source term discretization in two-dimensional shallow water models with porosity on unstructured grids, International Journal for Numerical Methods in Fluids, 50, 309–345.
  • 4. Hervouet J. M., Samie R. and Moreau B. (2000) Modeling urban areas in dam-break flood-wave numerical simulations, Proceedings of RESCDAM Workshop, Finnish Environment Institute, Seinajoki 1–5 October 2000, Finland.
  • 5. LeVeque R. J. (2002) Finite Volume Method for Hyperbolic Problems, Cambridge University Press, New York.
  • 6. Potter D. (1982) Computational Physics, PWN, Warsaw (in Polish).
  • 7. Prosnak W. J. (2006) Equations of Classical Fluid Mechanics, PWN, Warsaw (in Polish).
  • 8. Roe P. L. (1981) Approximate Riemann solvers, parameters vectors and difference schemes, Journal of Computational Physics, 43, 357–372.
  • 9. Sawicki J. (1998) Free Surface Flows, PWN, Warsaw (in Polish).
  • 10. Soares-Frazao S., Lhomme J., Guinot V. and Zech Y. (2008) Two-dimensional shallow-water model with porosity for urban flood modeling, Journal of Hydraulic Research, 46 (1), 45–64.
  • 11. Szydłowski M. (2007) Mathematical Modeling of Flood Waves in Urban Areas, Monographs of Gdansk University of Technology, 86, Gdansk (in Polish).
  • 12. Szydłowski M. and Magnuszewski A. (2007), Free surface flow modeling in numerical estimation of flood risk zones: a case study, Gdansk, TASK Quarterly, 11, 4, 301–313.
  • 13. Szymkiewicz R. (2000) Mathematical Modeling of Open Channel Flows, PWN, Warsaw (in Polish).
  • 14. Toro E. F. (1997) Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag, Berlin.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BATA-0001-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.