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Abstract

The incremental constitutive equations describing the pre-failure deformations of sand are
presented. These equations were calibrated on the basis of extensive experimental data,
obtained from investigations performed in a triaxial apparatus. Incremental equations were
calibrated separately for initially contractive and dilative soil samples. Then, they were
applied to predict the undrained behaviour of saturated soil samples. In the case of con-
tractive soils, the constitutive equations describe the effective stress paths leading to the
static liquefaction. In the case of dilative soils, the effective stress path is different, as the
mean effective stress initially decreases, and after passing the instability line, it starts to
increase, asymptotically reaching the failure envelope. Theoretical predictions of undrained
behaviour are supported by experimental data. The original feature of this paper is that one
can predict the undrained behaviour of saturated granular soils on the basis of stress-strain
characteristics of the same soil but dry or tested in drained conditions.

Key words: granular soils, stress-strain characteristics, instability line, dilative and contrac-
tive behaviour, static liquefaction

1. Introduction

The mechanical behaviour of granular soils differs essentially from that of other
materials, mainly due to specific volumetric strains that develop during shearing.
Experimental results show that some granular soils compact when sheared, and
some dilate, depending on their initial state. In traditional soil mechanics, the initial
state of granular soil is characterized by a single parameter, defined as the void ratio
e, see Craig (1987), Atkinson (1993). More recent experimental investigations have
revealed that the initial state of granular soils should rather be defined by a pair
of parameters, namely: e and p’ = mean effective stress, see Poulos (1981). It was
also found that, in the plane log p’ — e, there exists a straight line corresponding to
the steady state of granular soil (SSL).

The steady state corresponds to continuous deformation of soil, at constant
volume and constant stresses (Castro 1975, Poulos 1981). The region above SSL
corresponds to the contractive behaviour of soil, which means that this soil, when



208 A. Sawicki, W. Swidzifiski

0.70
e
N
\
~. contractive
0.65 \
\SS/
\
oig )‘
0.60
8|3 e = 0.746-0.0635log(p') \
\
\
\
0.55 dilative
P’ [10° N/m?|
0.50
- N ™ ¥ o~ooo © o 9 coooxm
o o o O O O0O0O— N [SPTEERS  Te) cor\cocne

Fig. 1. Steady state line (SSL) for “Skarpa” sand separating the contractive and dilative
regions

dry or in free drainage conditions, densifies during shearing. The region below
SSL corresponds to the dilative behaviour, when the soil dilates during shearing
(volumetric expansion), see Fig. 1.

The distinction between the contractive and dilative states is important in mod-
elling the pre-failure stress strain behaviour of granular soils, both dry and water
saturated, as this behaviour strongly depends on the initial state of the soil sam-
ple. In order to study these behaviours, the extensive experimental programme has
been carried out in the Institute of Hydro-Engineering for many years, see Swidz-
inski and Mierczynski (2002, 2005) and Swidziriski (2006). The experiments were
performed in a computer controlled triaxial testing system manufactured by GDS
Instruments, see Menzies (1988). This system enables the local measurement of
both lateral and vertical strains. The experiments were performed on the model
quartz sand “Skarpa”, characterized by the following parameters: maximum void
ratio emax = 0.677, minimum void ratio ey, = 0.423; angles of internal friction
¢ = 34° (loose sand) and ¢ = 41° (dense sand), determined from triaxial compres-
sion tests. Summary of the most important experimental results will be presented
in subsequent sections.

The aim of this paper is to show how the undrained behaviour of saturated
granular soils can be predicted from the stress-strain relations derived for the same
soil, but tested in dry or drained conditions. First, the incremental equations describ-
ing the stress-strain behaviour of dry/drained sand are summarized, after Sawicki
(2007). These equations have different forms for initially contractive and dilative
sand. In the case of dilative soil, the existence of instability line is taken into account
in the incremental equations.
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Then, these incremental equations, describing the pre-failure deformations of
sand, are applied to predict the undrained behaviour of saturated samples. In the
case of contractive soil, the predicted effective stress path is similar to that observed
in experiments. The stress deviator reaches its maximum value in the vicinity of the
instability line, and then decreases. The mean effective stress continuously decreases
due to the pore-pressure generation, and the effective stress path approaches the fail-
ure envelope, finally reaching almost zero effective stresses. Such a phenomenon is
known as the so-called static liquefaction. In the case of dilative soils, the effective
stress path is different. Before reaching the instability line, the mean effective stress
decreases, and then begins to increase. The stress path eventually approaches the
failure surface or not, but in the opposite direction in comparison with the con-
tractive soil. This behaviour corresponds to the initial generation of pore-pressure,
and then its subsequent decrease. The predicted behaviour is supported again by
experimental data.

The original and useful features of the present paper are the following:

— the links between the drained and undrained behaviours of granular soils are
shown in the explicit form,

— the equations governing the soil behaviour take into account the initially con-
tractive or dilative state of the soil, as well as the instability line,

— a summary of an extensive experimental programme is presented, which may
be useful for other researchers.

2. Drained Behaviour
2.1. Basic Definitions

In this Section, the summary of basic stress-strain characteristics of “Skarpa” sand,
tested in either dry or free draining conditions, are presented. They are related to
loading and unloading along simple stress paths, shown in Fig. 2, for the configu-
ration of triaxial tests.

The following notation is used in this paper:

’ ] ’ ’
p = 3 (0'1 + 20'3), (D
g=01-03=01-03, )
&, = &1 + 2¢&3, 3)

2
&g = 3 (&1~ 83), “4)
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Fig. 2. Soil sample in triaxial apparatus (a); simple stress paths applied for determination
of deformation characteristics (b)

where: 0| = vertical total stress; o] = o1 — u = vertical effective stress, o3 = hor-
izontal total stress; Ug = 03 —u = horizontal effective stress; u = pore pressure;
g1 = vertical strain; €3 = horizontal strain. For dry or free draining conditions:
oy =0 and 0 = 03, as u =0 in this case. The quantities appearing in Egs. (1)
to (4) are designated as follows: p’ = mean effective stress, g = stress deviator; &,
= volumetric strain; g, = deviatoric strain. The soil mechanics sign convention is
used, where the plus sign denotes compression. The following definition of loading
and unloading is accepted:

e spherical loading when dp’ > 0;
e spherical unloading when dp’ < 0;
e deviatoric loading when dg > 0;
e deviatoric unloading when dg < 0.

The above definition of loading/unloading is related to the simple stress paths
shown in Fig. 2b, which is sufficient for the present purposes. In general, the
problem of loading and unloading is more complex, see Zyczkowski (1973). Some
additional aspects of this problem are discussed in the next Section, in connection
with the undrained behaviour of granular soils.

2.2. Stress-Strain Curves

Figs. 3 to 5 illustrate typical stress-strain characteristics of “Skarpa” sand, related
to the stress paths shown in Fig. 2b, after Sawicki (2007). The strains that de-
velop during isotropic compression (path OA in Fig. 2b) are presented in Fig. 3.
A qualitative character of these stress-strain curves is similar for both dilative and
contractive soils.

An interesting feature of this behaviour is that the deviatoric strains develop
during the isotropic compression, which means that the samples investigated display
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Fig. 3. Volumetric and deviatoric strains developing during isotropic compression of
dry/drained sand (stress path OA in Fig. 2b)

an anisotropic character, in spite of very careful preparation of these samples in
order to obtain initially isotropic sand.

Fig. 4 shows the volumetric changes due to pure shearing (path ABC in Fig. 2b)
of two samples of “Skarpa” sand characterized by initially contractive and dilative
state, see Fig. 1. Note that there is a new variable n = g/p’ on the horizontal axis,
and also a new variable &,/ y/p” on the vertical axis. These variables were introduced
in order to present results of different experiments, performed for various values of
p’, in a common plot.

A basic difference between contractive and dilative samples is that the initially
contractive soil densifies during pure shearing, whilst the dilative soil first densifies
and then dilates. The maximum densification of dilative soil corresponds to n = 7’,
which is identified with the instability line, see Fig. 2b. Extreme values of volumetric
strains correspond to the failure envelope n = ”’. Note that the volumetric strains
reach finite value for n = ””, which means that it is not an asymptotic behaviour!
During the unloading corresponding to dn < 0, which is equivalent to dg < 0 (p’
= const in each experiment), the sand densifies in both cases. The stress-strain
characteristics were found to be almost linear.

Fig. 5 shows the shape of the deviatoric strain-stress curve during pure shearing
(path ABCBA in Fig. 2b). This shape is similar for both contractive and dilative
soils.
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Fig. 4. Volumetric changes due to pure shearing of contractive and dilative sand samples
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Fig. 5. Deviatoric deformations due to pure shearing. The qualitative behaviour of
contractive and dilative soils is similar
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2.3. Incremental Equations

It is assumed that the following incremental equations describe the pre-failure de-
formations of granular soils:

de, = Mdp' + Ndq, )

de, = Pdp’ + Qdg. (©6)

where M, N, P, Q are certain functions, which should be determined from basic
experimental results presented in the previous section. These functions are different
for dilative and contractive soils, and also have different shapes for loading and
unloading. Tables 1 and 2 summarize these functions, after Sawicki (2007).

Table 1. Functions appearing in Egs. (5) and (6) for contractive soil

Function loading unloading

A Alt

M v U
2y | 2y

4, 3 c

N c1n a,
i i

P A, Al
2N 2Ny

9192 9q
Q —= exp(g21) —
i v

Table 2. Functions appearing in Egs. (5) and (6) for dilative soil

Function loading unloading
Iy A, Ay
2y 2y
1
— Qaip+a);0<n<y
N y
N 1 .
Qasn+as);n’ <n<n’ P
v
u
p Ay q
2N 2Ny
bib, by
0 —= exp (ba1)
i v;?

The following parameters appear in functions M, N, P, Q: A,; A}; c1; aj; Ag;
AZ; gi; 92; ggs a1; A2; A3 A4, a‘j; by; by; b,. Altogether, there are 17 parameters,



214 A. Sawicki, W. Swidzifiski

but note that their number will increase as, for example the parameters A,, A, take
different values for initially loose and dense soils. Also note, that there are some
additional parameters as, for example, n’ and n”” which characterize particular soil.

2.4. About Soil Parameters

Such a large number of parameters, as that introduced in Section 2.3, is of little
practical importance, because their experimental determination would be expensive
and time consuming. However, in this paper, we are not attempting to propose
a practically useful model, but we would like to investigate the real behaviour of
actual soil. Models containing “the minimal set of material parameters” usually
lead to predictions which do not conform with experimental data. For example, we
have attempted to describe our rich empirical database using well known models of
soils, but with little success, see Sawicki (2003), Giebowicz (2006). It seems that
experience of other authors is similar, cf. Saada and Bianchini (1987), Kolymbas
(2000).

Egs. (5) and (6), with functions presented in Tables 1 and 2, describe very well
the mean results of tens of experiments performed in the laboratory of the Institute
of Hydro-Engineering. They have been derived empirically, as a result of analysis of
rough experimental data. Therefore, they can also be useful for theoretical modellers.
Below, numerical values of the introduced coefficients, corresponding to “Skarpa”
sand, are presented.

The coeflicients presented are expressed in useful units, namely stress unit
10° N/m? and strains unit 1073, The reason for choosing such units is purely
practical, as in numerical calculations we can deal with numbers of a similar order
of magnitude. For example, if g = 200 kPa = 2 x 10° N/m?, we introduce into
the respective equation just 2. If, after integration of Eq. (6), we obtain &, = 0.5
(expressed in strain unit) it means that the real strain is 0.5 x 1073 (see also Section
2.5).

Table 3. Average parameters describing isotropic compression of “Skarpa” sand,
after Sawicki (2007)

Initial 7p A, Al Ay Ay
Loose 0.02-0.44 | 6.01 | 4.41 | -0.905 | -0.047
Dense 0.71-0.86 | 3.47 | 291 | -0.470 | —0.205

Table 3 shows the average parameters describing isotropic compression of
“Skarpa” sand. The other parameters, appearing in functions M, N, P, Q, are
the following:
c1 =3.4; a; = -0.87; g1 = 0.0206; g> = 4.587; g, = 0.76; a; = —1.458; a, = 2.39;
ay = —42.215; ay = 69.232; a? = —0.386; by = 2.67 X 1073; by = 5.248; b, = 0.4.
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2.5. Example

Consider the isotropic loading (stress path OA in Fig. 2b) of initially loose and dry
“Skarpa” sand. Determine the strains that develop during this loading.

Because dq = 0, Egs. (5) and (6) take the following form, after introducing
respective expressions from Table 1 (or Table 2 which does not make a difference,
as respective equations are similar for both contractive and dilative soils in this
case):

d Yy d Ay (7)
g, = ; de, = .
oyt T

Integration of these equations, with zero initial conditions, gives the following
stress-strain relations (see Fig. 3):

& =4, \/?; &g = Aq v, (8)

where A, = 6.01 and A, = —0.905 (see Table 3).
For example, the volumetric strain for p’ =2 x 10° N/m? can be calculated as
follows: g, = 6.01 V2 = 8.5, which means that the real strain is 8.5 x 1073 = 0.0085.

3. Undrained Behaviour
3.1. Basic Relations

Granular soils as, for example, sands, are permeable, but when duration of loading
is short enough to prevent dissipation of excess pore-pressure, their behaviour can
be approximated assuming undrained conditions, as in the case of impulse loads
or earthquake shaking. The assumption of undrained behaviour means that the
volumetric deformation of saturated soil is zero, if the pore water is incompressible
(i.e. does not contain gas). It follows from Eq. (5) that in this case:

Mdp' + Ndq = 0, 9)

where dp’ = dp — du.
Therefore:

N
du=dp+ —dg. 10
u=dp+rdq (10)

Eq. (10) can be integrated for the given history of loading, and respective history
of pore-pressure changes determined.

In the case of compressible pore fluid, i.e. when it contains some admixture
of gas, Eq. (9) is invalid as the global volumetric deformation of saturated soil
will depend on the compressibility of pore-fluid, assuming that the solid grains are
incompressible.
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Consider the volume V of saturated sand before deformation, which reduces to
V after volumetric deformation. The volumetric strain is defined traditionally as:

Vo—-V
) = ) 11
2 Vo (11)
The volume V| consists of two parts:
Vo=V + Ve, (12)

where Vg = initial volume of pore fluid, Vg = VY = volume of grains. It follows
from Eqgs. (11) and (12) that:

vi-vi vli_viv!
g = 0 =9 2 = X funy, (13)
V() Vg V()

where y s = pore fluid compressibility; ng = initial porosity. Therefore, in undrained
conditions, we have:

X nodu = Mdp' + Ndgq, (14)

and after simple manipulations:

du (Mdp + Ndq). (15)

- M + nox s

For incompressible pore fluid (y; = 0), Eq. (15) reduces to Eq. (10). Having
known the pore pressure changes for given history of total stresses p and ¢, one can
determine respective changes of the mean stress p’, and subsequently the undrained
behaviour of saturated granular soil. In the next sections, such a behaviour will be
analysed in detail, separately for initially contractive and dilative soils.

3.2. Loading and Unloading

The basic definitions of loading and unloading were introduced in Section 2.1, in
connection with interpretation of experimental data. In Section 2.2, we have also
introduced a new variable = ¢/p’, which has been found useful in presentation
of the stress-strain curves shown in Figs. 4 and 5. These figures correspond to
experiments performed at p’ = const which means that for dg > O(loading) there is
also dn > 0. In undrained conditions, both stress variables, i.e. ¢ and p’, change,
so there is a need to define the deviatoric loading and unloading more precisely.
Recall that in the case of p’ = const, 1 increases when ¢ increases. In the case
g = const, i increases when p’ decreases, which means that deviatoric deformations
are possible when the stress deviator does not changes (not to mention deviatoric
changes due to initial anisotropic structure of the soil). In the case when g increases
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and p’ decreases, the new variable 7 also increases. Consider now an interesting
case when both g and p’ increase. The increment of 7 is given by the following
formula:

on on
= Lap +
aop’ P 0q

Therefore, for deviatoric loading we have:

1 ’/
dn dq = ;(dq—ndp)- (16)

1 ,
dn = » (dg-ndp’) > 0, (17)

or

dg—ndp’ >0 (18)

as p’ > 0 for granular soils.
In the case of unloading, there is:

dqg—ndp’ <0. (19)

The relations (18) and (19) can be illustrated graphically in the stress space,
as shown in Fig. 6. The stress increments directed upwards the line n = const
correspond to deviatoric loading. There is obviously di > 0 in this case, as these
stress increments define a new line 1 + dn = const. The other stress increments
correspond to unloading.

b q

loading

unloading

b

p

>

Fig. 6. Stress increments above the line 7 = const define deviatoric loading. Unloading
corresponds to stress increments directed below the line 17 = const

The conditions (18) and (19) should be checked when integrating Eqs. (10) and
(15), as the choice of function N depends on the type of loading.
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3.3. Static Liquefaction of Contractive Soil

Eq. (9) presents the condition of undrained behaviour expressed in terms of inde-
pendent variables p’ and g. Sometimes, it is more convenient to apply the other
pair of independent variables, p’ and n. Note that the function N (see Table 1) was
derived from the shape of respective curve shown in Fig. 4:

el = ¢ \/;7774, (20)

where the superscript g distinguishes the volumetric strain caused by shearing.

Note that during shearing of the soil sample in undrained conditions the mean
effective stress changes, in contrast to conditions kept during experiments with full
drainage, when p’ was kept constant. Therefore, the total differential of volumetric
strain is the following:

ol Bsq Al
dp’ +
2 \/_
Note that the third term in the above expression represents the volumetric change

due to spherical unloading. Eqs. (20) and (21) lead to the following differential
equation, describing the changes of mean effective stress during undrained shearing:

de =
g, Py

=0. 1)

dp’ 617>

A N— (22)
g 2o
1

Integration of this equation, with the initial condition: p’ = pg for n = 0; pg =
initial confining stress, leads to the following formula:

32
1

P =po —Cl4 : (23)

A I,l

Fig. 7 shows the stress path calculated from Eq. (23) for the following data: c;
=3.4; A, = 4.4; py = 2 against the experimental results obtained by Swidzinski and
Mierczyniski (2005). It can be seen that for these values the predicted curve does
not reproduce the experimental data too well (solid line), however after some small
corrections of the values of ¢; and A} coefficients the conformity is much better
(dashed line).

Note that the model presented in this paper correctly predicts the undrained
behaviour of contractive soil during shearing. Calculations are terminated on the
Coulomb-Mohr yield surface which corresponds to the so-called “static liquefac-
tion”.
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Fig. 7. Experimental and predicted stress paths during undrained shearing of saturated
contractive soil

Quantitative analysis of this result shows that the maximum value of stress devi-
ator g corresponds to 7 =~ 0.7, whilst the instability line in drained tests corresponds
to 1 lying in the interval (0.9-1). Note that the volumetric strain curves, shown in
Figs. 3 and 4 (contractive soil), do not contain any features indicating that the
instability line exists. This feature is visible only when these curves are applied to
predict the undrained shearing of contractive soil, see Fig. 7.

3.4. Undrained Behaviour of Dilative Soil

The volumetric strains of drained dilative soil due to shearing are shown in Fig. 4.
In this case, they can be described by the incremental equation (5), with respective
functions listed in Table 2. Then, a similar procedure to that described previously
can be applied to study the undrained behaviour. However, such a procedure, ap-
plied to the functions mentioned, does not lead to simple formulae describing the
effective stress paths in undrained conditions, although there is no problem with nu-
merical integration of such equations. In order to simplify the analysis of undrained
shearing, and to obtain analytical formulae for the effective stress paths, a bi-linear
approximation of respective deviatoric stress — volumetric strain is applied in this
section, see Fig. 8.

The AB part of the stress-strain curve can be approximated by the following
simple formula:
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Fig. 8. Bi-linear approximation of the deviatoric stress-volumetric strain curve for dilative
soil, cf. Fig. 4

&

v;?
where B, = 1.195 in the case considered (recall respective units!). Already known
procedure leads to the following relation:

= By, (24)

de, [Bjp + A“)dp’ + +[p'B,dy = 0. (25)

1
2N
Integration of this equation leads to the following analytical formula, valid for
n €< 0,n" >, where n’ corresponds to the instability line:

, 1
R (26)
1 v
( Aﬁn)
In the interval BC, we have:
&1
= = Cvn + D,, (27)

\/?

and similar procedure leads to the following analytical solution:
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Fig. 9. Predicted effective stress path during undrained shearing of dilative “Skarpa” sand

, 2
n +§) , 28)

Per (77 +&
where ¢ = (D, + A,))/C,, and p* corresponds to the mean effective stress on the
instability line, and 1’ corresponds to the instability line (point B in Fig. 8). Egs.
(26) and (28) define the effective stress paths, corresponding to undrained shearing
of dilative soil.

Example: Assume the following data that correspond to the dilative “Skarpa”
sand: A, = 3.47; Ay =291; B, = 1.486; C, = -77.79; D, = 79.256; ' = 1.0; n”
= 1.395; po = 2. Fig. 9 illustrates the stress paths calculated for the above data
(dashed line). It is similar to that of contractive soil before reaching the instability
line. In the same figure some other stress paths, calculated for other initial mean
effective stresses, have also been shown reflecting well the qualitative character of
experimental results.

4. Conclusions
The main results presented in this paper can be summarized as follows:

A) The summary of experimental results dealing with the pre-failure behaviour of
granular soils are presented. These results represent the volumetric and devia-
toric strains of initially contractive or dilative soils, subjected to simple stress
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paths in dry or fully drained conditions. The empirical results presented are
then approximated by simple mathematical formulae, which can be used by
other researchers to validate their models.

B) The stress-strain curves, corresponding to drained conditions, are applied to
predict the effective stress paths for undrained conditions. It was shown that the
drained stress-strain characteristics lead to prediction of so-called static liquefac-
tion in the case of contractive soil, in accordance with experimental data. In the
case of dilative soil, the predicted behaviour is also consistent with experimental
results.

C) The role of instability line is also discussed in this paper.
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