PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Studies of theoretical and practical aspects of the design of materials lighter than air

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Prace studialne nad teoretycznymi i praktycznymi aspektami projektowania materiałów lżejszych od powietrza
Języki publikacji
EN
Abstrakty
EN
This paper discusses some theoretical aspects of the design of ultralight materials. Potential application of syntactic foams in the fabrication of composites lighter than air is also analyzed. Carbon allotropic forms (fullerenes, colossal carbon tubes) and some non-carbon matters are considered as components of ultralight composites. Calculations for the size of fullerenes, the number of carbon atoms in their structure and thickness of reinforcing phase are presented. It is concluded that 3D carbon molecules (fullerenes) and colossal carbon tubes are the most promising components for design of ultralight metallic materials which can be lighter than air.
PL
W artykule omówiono wybrane teoretyczne aspekty projektowania ultralekkich materiałów kompozytowych. Przeanalizowano potencjalne zastosowanie pian syntektycznych w produkcji kompozytów lżejszych od powietrza. Uwzględniono alotropowe odmiany węgla (fulereny, "kolosalne" nanorurki węglowe), jak również niektóre substancje niewęglowe mogące znaleźć zastosowanie jako komponenty ultralekkich kompozytów. Podano wzory, które pozwalają obliczyć wielkość fulerenów, liczbę atomów węgla w ich strukturze i grubość ścianek fazy zbrojącej. Stwierdzono, że cząsteczki węgla 3D (fulereny) i nanorurki węgla o makrorozmiarach stanowią najbardziej obiecujące substancje do projektowania ultralekkich materiałów o gęstości mniejszej od gęstości powietrza.
Rocznik
Strony
5--30
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
autor
  • Foundry Research Institute, 73 Zakopianska Street, 30-418 Krakow, Poland
Bibliografia
  • 1. Drenchev L., Sobczak J.J., Malinov S., Sha W.: Gasars: a class of metallic materials with ordered porosity, Materials Science and Technology, 2006, Vol. 22, No. 10, pp. 1135-47 (13).
  • 2. Lightweight Structural Members, United States Patent 7,582,361, September 1, 2009. Authors: Purgert, Robert M. (Brooklyn Heights, OH); Sobczak, Jerzy J. (Krakow, PL); Boyd, Jr. Lawrence C. (Shaker Heights, OH); Singh, Nipendra P. (Pepper Pike, OH); Bardes, Bruce P. (Montgomery, OH).
  • 3. Groom D.E.: Abridged from Atomic Nuclear Properties. Particle Data Group: 2007, http://pdg.lbl.gov/2007/reviews/atomicrpp.pdf.
  • 4. Drenchev L., Sobczak J.J., Malinov S., Sha W.: Modelling of structural formation in ordered porosity metal materials, Modelling Simul. Mater. Sci. Eng., 2006, Vol. 14, No. 4, pp. 663-675, doi:10.1088/0965-0393/14/4/009.
  • 5. Xie Z., Ikeda T., Okuda Y., Nakajima H.: Sound absorption characteristics of lotus-type porous copper fabricated by unidirectional solidification, Materials Science and Engineering: 2004, A, Vol. 386, No. 1-2, pp. 390-395, doi:10.1016/j.msea.2004.07.058
  • 6. http://en.wikipedia.org/wiki/Metal_foam.
  • 7. Sobczak J.J., Sobczak N., Asthana R., Wojciechowski A., Pietrzak K., Rudnik D.: Atlas of Cast Metal-Matrix Composite Structures, Part I, Qualitative analysis, Motor Transport Institute - Warsaw, Foundry Research Institute - Krakow, 2007.
  • 8. Fullerene, Encyclopedia Britannica on-line.
  • 9. Iijima S.: Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy, Journal of Crystal Growth, 1980, Vol. 50, No. 3, pp. 675-683, doi:10.1016/0022-0248(80)90013-5.
  • 10. http://en.wikipedia.org/wiki/Fullerene.
  • 11. http://en.wikipedia.org/wiki/Carbon_nanotubes.
  • 12. Bellucci S.: Carbon nanotubes: physics and applications, Physica Status Solidi, 2005, (c), Vol. 2, No. 1, pp. 34-47, doi:10.1002/pssc.200460105.
  • 13. Chae H.G., Satish K.: Rigid-rod Polymeric Fibers, Journal of Applied Polymer Science, 2006, Vol. 100, No. 1, pp. 791-802, doi:10.1002/app.22680.
  • 14. Meo M., Rossi M.: Prediction of Young’s modulus of single wall carbon nanotubes by molecular-mechanics-based finite element modelling, Composites Science and Technology, 2006, Vol. 66, Nos. 11-12, pp. 1597-1605, doi:10.1016/j.compscitech.2005.11.015.
  • 15. Sinnott S.B., Rodney A., Andrews R.: Carbon Nanotubes: Synthesis, Properties, and Applications, Critical Reviews in Solid State and Materials Sciences, 2001, Vol. 26, No. 3, pp. 145-249, doi:10.1080/20014091104189.
  • 16. http://en.wikipedia.org/wiki/Tensile_strength.
  • 17. Collins P.G.: Nanotubes for Electronics, Scientific American Magazine, 2000, pp. 67-69, http://www.crhc.uiuc.edu/ece497nc/fall01/papers/NTs_SciAm_2000.pdf.
  • 18. Jensen K., Mickelson W., Kis A., Zettl A.: Buckling and kinking force measurements on individual multiwalled carbon nanotubes, Phys. Rev., 2007, B, Vol. 76, p.195436.
  • 19. Lee C. et al. „Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene”. Science 2008, 321 (5887), p.385-397.
  • 20. Peng H., Chen D., Huang J.Y. et al.: Strong and Ductile Colossal Carbon Tubes with Walls of Rectangular Macropores, Phys. Rev. Lett, 2008, Vol. 101, No.14, pp. 145501, doi:10.1103/PhysRevLett.101.145501
  • 21. http://en.wikipedia.org/wiki/Carbon_nanotube.
  • 22. Min-Feng Yu, Lourie O.M., Dyer J., Moloni K., Kelly T.F., Ruoff R.S.: Strenght and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science, 2000, Vol. 287, No. 5453, pp. 637-640. doi:10.1126/science.287.5453.637.
  • 23. Demczyk B.G., Wang Y.M., Cumings J., Hetman M., Han W., Zettl A., Ritchie R.O.: Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes, „Materials Science and Engineering”, 2002, A, Vol. 334, Nos. 1-2, pp. 173-178, doi:10.1016/S0921-5093(01)01807-X.
  • 24. Rode A.V., et al.: Structural analysis of a carbon foam formed by high pulse-rate laser ablation, Applied Physics A: Materials Science & Processing, 1999, Vol. 69, No. 7, pp. S755-S758, doi:10.1007/s003390051522.
  • 25. http://en.wikipedia.org/wiki/Carbon_nanofoam.
  • 26. Rode A.V. et al.: Unconventional magnetism in All-carbon nanofoam, Phys. Rev., 2004, B, Vol. 70, No. 5, pp. 054407.
  • 27. Wang Z., Ciselli P., Peijs T.: The extraordinary reinforcing efficiency of single-walled carbon nanotubes in oriented poly (vinyl alcohol) tapes, Nanotechnology, 2007, Vol. 18, No. 45, pp. 455709, IOP.org.
  • 28. Lee C. et al.: Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 2008, Vol. 321, No. 5887, pp.385-388, doi:10.1126/science.1157996. http://www.sciencemag.org/cgi/content/abstract/321/5887/385.
  • 29. http://en.wikipedia.org/wiki/Graphene.
  • 30. Australian Stainless Steel Development Association (ASSDA) - Properties of Stainless Steel.
  • 31. Stainless Steel – 17-7PH (Fe/Cr17/Ni 7) Material Information.
  • 32. Wagner H.D.: Reinforcement, Encyclopedia of Polymer Science and Technology, John Wiley & Sons, 2002, doi:10.1002/0471440264.pst317, http://www.weizmann.ac.il/wagner/COURSES/Reading%20material%20(papers)/Encyclopedy_of_polymer_science_2003.pdf.
  • 33. http://www.ioffe.ru/SVA/NSM/Semicond/Si.
  • 34. Patnaik P.: Handbook of Inorganic Chemicals. McGraw-Hill, 2002.
  • 35. Wang X., Li Q., Xie J., Jin Z., Wang J., Li Y., Jiang K., Fan S.: Fabrication of Ultralong and Electrically Uniform Single-Walled Carbon Nanotubes on Clean Substrates, Nano Letters 9, Vol. 9, 2009, pp. 3137-3141, doi:10.1021/nl901260b.
  • 36. Hembacher S., Giessibl F.J., Mannhart J., Quate C.F.: Revealing the hidden atom in graphite by low-temperature atomic force microscopy, Procceedings of The National Academy of Sciences of the USA, 2003, Vol. 100, No. 22, pp. 12539-12542, doi: 10.1073/pnas.2134173100, www.pnas.org/cgi/doi/10.1073/pnas.2134173100.
  • 37. http://en.wikipedia.org/wiki/Carbon_nanobud.
  • 38. http://www.flickr.com/photos/argonne/3974996522.
  • 39. Taher A.: Scientists hail’frozen smoke’as material that will change world, News Article, London: Times Online, 2007-08-19, Retrieved 2007-08-22.
  • 40. Kistler S.S.: Coherent expanded aerogels and jellies, Nature, 1931, Vol. 127, No. 3211, pp. 741, doi:10.1038/127741a0.
  • 41. Kistler S.S.: Coherent Expanded-Aerogels, Journal of Physical Chemistry, 1932, Vol. 36, No. 1, pp. 52-64, doi:10.1021/j150331a003.
  • 42. Pekala R.W.: Organic aerogels from the polycondensation of resorcinol with formaldehyde, Journal of Material Science, 1989, Vol. 24, No. 9, pp. 3221-3227, doi:10.1007/BF01139044.
  • 43. http://en.wikipedia.org/wiki/Carbon_nanofoam.
  • 44. Guinness Records Names JPL’s Aerogel World’s Lightest Solid, News Article. Jet Propulsion Laboratory, 2002-05-07, http://stardust.jpl.nasa.gov/news/news93.html. Retrieved 2009-05-25.
  • 45. Rode, Andrei V.; et al. (1999). „Structural analysis of a carbon foam formed by high pulse-rate laser ablation”. Applied Physics A: Materials Science & Processing 69 (7): S755-S758.
  • 46. Carbon nanotubes, but without the ‘nano’, Aug. 2008, http://physicsworld.com/cws/article/mews/35364. Retrieved 2009-08-03.
  • 47. Peng, H., Chen, D.: et al., Huang J.Y. et al.: „Strong and Ductile Colossal Carbon Tubes with Walls of Rectangular Macropores”. Phys. Rev. Lett., 2008, 101 (14): 145501. The Space Elevator Feasibility Condition, http://www.spaceward.org/elevator-feasibility.
  • 48. The Space Elevator Feasibility Condition, http://www.spaceward.org/elevator-feasibility.
  • 49. Tenne R., Margulis L., Genut M., Hodes G.: Polyhedral and cylindrical structures of tungsten disulphide, Nature, 1992, Vol. 360, No. 6403, pp. 444-446, doi:10.1038/360444a0.
  • 50. Pauling L.: The Structure Of The Chlorites, Proc. Natl. Acad. Sci. U.S.A., 1930, Vol. 16, No. 9, pp. 578-82. doi:10.1073/pnas.16.9.578. PMC 526695. PMID 16587609.
  • 51. Harris, P.F.J.: Carbon nanotubes and related structures (1st ed.). Cambridge University Press, 2002, pp. 213-32.
  • 52. Dachi Yang, Guowen Meng, Shuyuan Zhang, Yufeng Hao, Xiaohong An, Qing Wei, Min Ye, Lide Zhang: Electrochemical synthesis of metal and semimetal nanotube-nanowire heterojunctions and their electronic transport properties, Chem. Commun., 2007, pp. 1733-1735, doi:10.1039/B614147A, http://pubs.rsc.org/en/Content/ArticleLanding/2007/CC/b614147a.
  • 53. Novoselov K.S. et al.: Two-dimensional atomic crystals, Procedings of the National Academy of Sciences of the U.S.A., 2005, Vol. 102, No. 30, pp. 10451-10453, doi:10.1073/pnas.0502848102, http://onnes.ph.man.ac.uk/nano/Publications/PNAS_2005.pdf.
  • 54. http://www.aerogel.org/?p=16.
  • 55. Poco J.F., Satcher Jr J H., Hrubesh L. W.: Synthesis of high porosity, monolithic alumina aerogels, Journal of Non-Crystalline Solids, 2001, Vol. 285, No. 1-3, pp. 57-63, doi: 10.1016/S0022-3093(01)00432-X.
  • 56. http://www.aerogel.org/?p=1022.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT9-0025-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.