PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wybrane termofizyczne właściwości proszków cyrkonianowych na bazie pierwiastków ziem rzadkich typu RE2Zr2O7 (RE- Gd, La, Sm, Nd) przeznaczonych do natryskiwania cieplnego powłokowych warstw barierowych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Selected thermo-physical properties of zirconia powders based on rare earth elements such as RE2Zr2O7 (RE - Gd, La, Sm, Nd) for thermal spray coating of barrier layers
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono wyniki badań wybranych termofizycznych właściwości proszków ceramicznych typu RE2Zr2O7 (RE- Gd, La, Nd, Sm) przeznaczonych do natryskiwania plazmowego powłokowych barier cieplnych. W celach porównawczych przedstawiono również wyniki dla standardowego proszku typu ZrO2-8% wag. Y2O3 (Y8SZ). W celu wyznaczenia tych parametrów wykonano badania przewodności temperaturowej a (metodą laser-flash) oraz ciepła właściwego c[sub]p , stosując różnicową kalorymetrię skaningową DSC. Zakres temperatury pomiarów wynosił 25-1500°C. Badaniom poddano próbki spiekane w 1000°C. Przeprowadzone badania wykazały, że przewodność temperaturowa proszków typu RE2Zr2O7jest w temperaturze 1000°C niższa niż proszku Y8SZ. W zakresie temperatury 25-750°C wyższą przewodność temperaturową niż proszek Y8SZ wykazywał proszek typu La2Zr2O7. Najwyższą wartość ciepła właściwego wykazuje proszek cyrkonianowy Y8SZ, natomiast najniższą proszek na bazie cyrkonianu samaru.
EN
Paper presents results of investigations of selected thermophysical properties of ceramics powders RE2Zr207 (RE - Gd, La, Nd, Sm) type, used for thermal spray coatings. In comparison also standard powder of ZrO2-8%wg. Y2O3 (Y8SZ) was tested. Using laser-flash method thermal conductivity was designated and specific heat c[sub]p by differential scanning calorimetry (DSC) was determined. Measuring temperature varried from 25-1500°C. The samples tested were sintered at 1000°C. As a results of tests we obtain that thermal conductivity of RE2Zr2O7 powders at 1000°C is lower than Y8SZ. At temperature 25-750°C higher thermal conductivity was observed for La2Zr2O7 than for Y8SZ. The highest specific heat has zirconate powder Y8SZ, and the lowest- powder based on samarium zirconate.
Rocznik
Strony
15--26
Opis fizyczny
Bibliogr. 53 poz., rys.
Twórcy
autor
autor
autor
  • Politechnika Śląska, Katedra Nauki o Materiałach, ul. Krasińskiego 8, 40-019 Katowice
Bibliografia
  • 1. Sieniawski J.: Kryteria i sposoby oceny materiałów na elementy lotniczych silników turbinowych, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, 1995
  • 2. Yu Z., Dharmasena K.P, Hass D.D., Wadley H.N.G.: Vapor deposition of platinum alloyed nickel aluminide coatings, Surface & Coatings Technology, 201 (2006) 2326-2334
  • 3. Vassen R., Tietz F., Kerkhoff G., Stoever D.: New materials for advanced thermal barrier coatings, Lecomte-Beckers J., Schuber R, Ennis P.J., (Ed.) Proceedings of the 6th Liége Conference on Materials for Advanced Power Engineering (Universite de Liége, Belgium, November 1998), (1998), 1627-1635 Forschungszentrum Jülich GmbH, Jülich, Deutschland
  • 4. Lackey W.J., Stinton D.P, Cerny G.A., Schaffhauser A.C., Fehrenbacher L.L.: Ceramic co-atings for advanced heat engines - a review and projection, Advanced Ceramic Materials, 2 (1987) 24-30
  • 5. Vassen, R. and Stoever, D.: Conventional and new materials for thermal barrier coatings in Functional Gradient Materials and Surface Layers Prepared by Fine Particles Technology, ed. M.I. Baraton and I. Uvarova. Kluwer Academic Publishers, Netherlands,199-216
  • 6. Maloney M. J.: U.S. Patent No. 6,117,560, 2000
  • 7. Maloney M. J.: U.S. Patent No. 6,284,323, 2001
  • 8. Schulz U. et al.: Some recent trends in research and technology of advanced thermal barrier coatings, Aerospace Science and Technology, 7 (2003) 73-80
  • 9. Maloney M. J.: U.S. Patent No. 6,117,560, 2000
  • 10. Maloney M. J.: U.S. Patent No. 6,284,323, 2001
  • 11. Subramanian R.: U.S. Patent No. 6,258,467, 2001
  • 12. Subramanian M. A., SleightA. W.: In Handbookon the Physics and Chemistry of Rare Earths, ed. Gschneider K. A. and Erying L.: Elsevier Science Publishers, Oxford, UK (1993) 225
  • 13. Vassen R., Cao X.,Tietz F., Kerkhoff G., Stoever D.: La2Zr2O7-a new candidate for thermal barrier coatings, Lugscheider E., Kammer P.A., (Ed.) Proceedings of the United Thermal Spray Conference’99 (Düsseldorf Germany, March 1999), (1999), 830-834 ASM International, Yerlag für Schweißen und Verwandte Verfahren, Düsseldorf
  • 14. Vassen R., Cao X., Tietz F., Basu D., Stoever D.: Zirconates as new materials for thermal barrier coatings, Journal of American Ceramic Society, 83 (2000) 2023-2028
  • 15. Wilden J., Wank M., Steffens H.D., Brune M.: New thermal barrier coating system for high temperature applications, Coddet Christian, (Ed.) Proceedings of the 15th International Thermal Spray Conference: Thermal Spray Meeting the Challenges of the 21st Century (Nice, France, May 1998), (1998), 1669-1673 ASM International, Materials Park, OH, USA
  • 16. Cao X., Vassen R., Tietz F., Jungen W., Stoever D.: Thermal stability of lanthanum zirconate plasma-sprayed coating, Journal of American Ceramic Society, 84 (2001) 2086-2090
  • 17. Subramanian M.A., Aravamudan G., Subba Rao G.V.: Oxide pyrochlores-a review, Progress in Solid State Chemistry, 15 (1983) 55-143
  • 18. Ding C., Xi Y., Zhang Y, Qu J., Qiao H.: Thermophysical properties of plasma sprayed rare earth oxide coatings, Sandmeier S., Eschnauer H., Huber P., Nicoll A.R., (Ed.) The 2nd Plasma-technik-symposium (Lucerne Switzerland, June 1991), (1991), 27-32 Plasma-Technik AG, Wohlen, Switzerland
  • 19. Lehmann H. et al.: Thermal conductivity and thermal expansion coefficients of the lantha-num rare-earth-element zirconate system, Journal of American Ceramic Society, 86 (2003) 1338-1344
  • 20. Wu J., et al.: Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications, Journal of American Ceramic Society, 85 (2002) 3031-3035
  • 21. Xu Q., et al.: Rare-earth zirconate ceramics with fluorite structure for thermal barrier coatings, Journal of American Ceramic Society, 89 (2006) 340-342
  • 22. Zhu D., Miller R.A.: Development of advanced low conductivity thermal barrier coatings, International Journal of Applied Ceramic Technology, 1 (2004) 86-94
  • 23. Balsone S.J., et al.: Materials Beyond Superalloys: Exploiting high-temperature composites, Technical Information Series, GE Research & Development Center, July 2001
  • 24. Bewley B.P., et al.: A review of very high-temperature nb-silicide based composites, Technical Information Series, GE Research & Development Center, September 2002I, 2002GRC172
  • 25. Korneev V.R., Glushkova V.B., Keler E.K.: Izv. Akad. Nauk SSSR, Neorg. Mater. 7 (1971) 886-887
  • 26. Bolech M., Ph.D. Thesis, University of Amsterdam, Amsterdam, Netherlands, 1998
  • 27. Bolech M., Cordfunke E.H.P., Janssen F.J.J.G., Navrotsky A.: Standard enthalpy of formation of lanthanum zirconate, Journal of American Ceramic Society, 78 (1995) 2257-2258
  • 28. Bolech M., Cordfunke E.H.P., Van Genderen A.C.G., Van Der Laan R.R., Janssen F.J.J.G., Van Miltenburg J.C.: The heat capacity and derived thermodynamic functions of La2Zr2O7 and Ce2Zr2O7 from 4 to 1000 K, Journal of Physics and Chemistry of Solids, 58 (1997) 433-439
  • 29. Lutique S., Konings R.J.M., Rondinella V.V., Somers J., Wiss T.: The thermal conductivity of Nd2Zr2O7 pyrochlore and the thermal behaviour of pyrochlore-based inert matrix fuel, Journal of Alloys and Compounds, 352 (2003) 1-5
  • 30. Lutique S., Javorsky P., Konings R.J.M., Krupa J.-C., van Genderen A.C.G., van Miltenburg J.C., Wastin F.: The low-temperature heat capacity of some lanthanide zircoantes, Journal of Chemical Thermodynamics, 36 (2004) 609-618
  • 31. E.H.P. Cordfunke and R.J.M. Konings, Editors, Thermochemical data for reactor materials and fission products, North Holland, Amsterdam (1990)
  • 32. Lutique S., Javorsky’ P., Konings R.J.M., van Genderen A.C.G., van Miltenburg J.C., Wastin F.: Low temperature heat capacity of Nd2Zr2O7 pyrochlore, Journal of Chemical Thermodynamics, 35 (2003) 955-965
  • 33. Sedmidubsky T., Benes O., Konings R.J.M.: High temperature heat capacity of Nd2Zr2O7 and La2Zr2O7 pyrochlores, Journal of Chemical Thermodynamics, 37 (2005) 1098-1103
  • 34. Hong-Song Z., Zhen-Jun L., Qiang X., Fu-Chi W., Ling L.: Preparation and thermophisical properties of Sm2(Ce0,3 Zr0,7)2O7 ceramic, Advanced Engineering Materials, 10 (2008) 139-142
  • 35. Hong-Song Z., Qiang X., Fu-Chi W., Ling L., Wei Y, Chen X.: Preparation and thermophisical properties of (Sm0,5La0,5)2Zr2O7 and (Sm0,5La0,5)2(Zr0,5Ce0,5)2O7 ceramics for thermal barrier coatings, Journal of Alloys and Compounds, 475 (2009) 624-628
  • 36. Lehmann H., Pitzer D., Pracht G., Vassesn R., Stover D.: Thermal conductivity and thermal expansion coefficients of the lanthanum rare-earth-element zirconate system, Journal of American Ceramic Society, 86 (2003) 1338-1344
  • 37. Hongming Z, Danqing Y, Zhiming Y, Lairong X.: Preparation and thermophisical properties of CeO2 doped La2Zr2O7 ceramics for thermal barrier coatings, Journal of Alloys and Compounds, 438 (2007) 217-221
  • 38. Zhan-Guo L, Jia-Hu O., Yu Z.: Structural evolution and thermophisical properties of (Smx Gd1-x)2Zr2O7 (0≤x≤1.0) ceramics, Journal of Alloys and Compounds, 472 (2009) 319-324
  • 39. Pan W., Wan C.L., Xu Q., Wang J.D., Qu Z.X.: Thermal diffusivity of samarium-gadolinium zirconate solid solutions, Termochimica Acta, 455 (2007) 16-20
  • 40. Zhan-Guo L., Jia-Hu O., Yu Z.: Heat capacities and derive3d thermodynamic functions of neodymium-gadolinium zirconates from 298.15 to 1050K, Journal of Alloys and Compounds, 475 (2009) 21-24
  • 41. Zhan-Guo L., Jia-Hu O., Bai-He W., Yu Z., Jing L.: Preparation and thermophisical properties of NdxZr1-xO2x/2, Journal of Alloys and Compounds, 466 (2008) 39-44
  • 42. Moskal G.: Microstructural characterization of conventional and nano-sized YSZ powders, for TBC Systems obtained by APS, EMAS 2009, 11th European Workshop on Modern Development and Applications in Microbeam Analysis, 10-14 may 2009, Gdansk, Poland, Book of Tutorials and Abstracts, 273
  • 43. Moskal G.: Microstructural characterization of a new type of RE2Zr2O7 Powders for TBC systems obtained by APS, EMAS 2009, 11th European Workshop on Modern Development and Applications in Microbeam Analysis, 10-14 may 2009, Gdansk, Poland, Book of Tutorials and Abstracts, 274
  • 44. Moskal G., Witala B., Rozmysłowska A.: Thermal diffusivity of RE2Zr2O7 - type ceramic powders intended for TBC’s deposited by APS, Archives of Materials Science and Engineering, 36(2009) 76-81
  • 45. Rozmysłowska A., Witala B., Moskal G.: Thermal diffusivity measurement of zirconia and zircoante powders. Characterization of laser-flash method and LFA427 apparatus, Proceedings of 16th International Students Day of Metallurgy, ISDM 2009, VSB-Technical University of Ostrava, April 23-25, 2009, Book of Abstracts, 13
  • 46. Gazda A., Homa M.: Określenie przewodnictwa cieplnego wybranych gatunków żeliwa sferoidalnego za pomocą pomiaru przewodnictwa temperaturowego metodą laser-flash. Prace Instytutu Odlewnictwa, 2009, t. XLIX, nr 2, s. 5-18
  • 47. Moskal G., Rozmysłowska A.: Wyznaczanie dyfuzyjności cieplnej metodą laser-flash oraz charakterystyka urządzenia LFA 427 firmy NETZCH, XXXVI Szkoła Inżynierii Materiałowej, Kraków - Krynica, 23-26 IX 2008, 166-171
  • 48. Konings R.J.M.: Estimation of the standard entropies of some Am(III) and Cm (III) compounds, Journal of Nuclear Materials, 295 (2001) 57-63
  • 49. Wu J., Padture N.P., Klemens P.G., Gell M., Garcia E., Miranzo P., Osendi M.I.: Thermal conductivity of ceramics in the ZrO2-GdO1,5 system, Journal of Materials Research, 17 (2002) 3193-3200
  • 50. Youngblood G.E., Rice R.W., Ingel R.P.: Thermal diffusivity of partially and fully stabilized (yttria) zirconia single crystals, Journal of American Ceramic Society, 71 (1988) 255-260
  • 51. Kingery W.D., Thermal Conductivity: XII, Temperature dependence of conductivity for singlephase ceramics, Journal of American Ceramic Society, 38 (1955) 251-255
  • 52. Wan C.L., Pan W., Xu Q., Qin Y.X., Wang J.D., Qu Z.X., Fang M.H.: Effect of point defects on the thermal transport properties of (LaxGd1-x)2Zr2O7: Experiment and theoretical model, Physical Review B 74 (2006) 144109
  • 53. Schlichting K.W., Padture N.P., Klemens P.G.: Thermal conductivity of dense and porous yttria-stabilized zirconia, Journal of Materials Science, 36 (2003) 3003-3010
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT9-0016-0030
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.