PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Boussinesq-type Equations for Long Waves in Water of Variable Depth

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with the problem of the transformation of long gravitational waves propagating in water of variable depth. The main attention of the paper is focused on the derivation of equations describing this phenomenon. These equations are derived under the assumption that the non-viscous fluid is incompressible and rotation free, and that the fluid velocity components may be expressed in the form of the power series expansions with respect to the water depth. This procedure makes it possible to transform the original two-dimensional problem into a one-dimensional one, in which all unknown variables depend on time and a horizontal coordinate. The partial differential equations derived correspond to the conservation of mass and momentum. The solution of these equations is constructed by the finite difference method and an approximate discrete integration in the time domain. In order to estimate the accuracy of this formulation, theoretical results obtained for a specific problem were compared with experimental measurements carried out in a laboratory flume. The comparison shows that the proposed theoretical formulation is an accurate description of long waves propagating in water of variable depth.
Słowa kluczowe
Twórcy
autor
  • Institute of Hydro-Engineering, Polish Academy of Sciences, Kościerska 7, 80-328 Gdańsk, Poland, jks@ibwpan.gda.pl
Bibliografia
  • 1. Bj¨ork A. and Dahlquist G. (1983) Numerical Methods (in Polish), PWN, Warszawa.
  • 2. Carrier G. F. and Greenspan H. P. (1958) Water waves of finite amplitude on a sloping beach, J. Fluid Mechanics, 4, 97–109 .
  • 3. Chan R. K. C. and Street A. L. (1970) A computer study of finite amplitude water waves, J. Comp. Physics, 6, 68–94 .
  • 4. Dingemans M. W. (1997) Water wave propagation over uneven bottoms, World Scientific, Singapore, New York.
  • 5. Van Groesen E. and de Jager E. M. (1995) Mathematical Structures in Continuous Dynamical Systems, North-Holland.
  • 6. Hirsch Ch. (1992) Numerical Computation of Internal and External Flows, Vol. I, J. Wiley & Sons, Chichester.
  • 7. Madsen P. A. and Sch¨affer H. A. (1999) A Review of Boussinesq-Type Equations for Surface Gravity Waves, [in:] Advances in Coastal and Ocean Engineering, Vol. 5, Ed. P. L.-F. Liu, World Scientific, Singapore.
  • 8. Nwogu O. (1993) Alternative Form of Boussinesq Equations for NearshoreWave Propagation, Journal of Waterway, Port, Coastal, and Ocean Engineering, 119 (6), 618–638.
  • 9. Peregrine D. H. (1967) Long waves on a beach, J. Fluid Mech., 27, part 4, 815–827.
  • 10. Stoker J. J. (1948) The formation of breakers and bores, Comm. Pure Applied Math, 1 (1), 1–87.
  • 11. Toro E. F. (1997) Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag, Berlin.
  • 12. Ursell F. (1953) The long wave paradox in the theory of gravity waves, Proc. Cambridge Phil. Soc., 49, 685–694.
  • 13. Wilde P. and Wilde M. (2001) On the Generation of Water Waves in a Flume, Archives of Hydro-Engineering and Environmental Mechanics, 48 (4), 69–83.
  • 14. Whitham G. B. (1974) Linear and Nonlinear Waves, J. Wiley & Sons, New York, London, Sydney, Toronto.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT8-0019-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.