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Abstract
The paper deals with the problem of the transformation of long gravitational waves propagat-
ing in water of variable depth. The main attention of the paper is focused on the derivation
of equations describing this phenomenon. These equations are derived under the assumption
that the non-viscous fluid is incompressible and rotation free, and that the fluid velocity
components may be expressed in the form of the power series expansions with respect to
the water depth. This procedure makes it possible to transform the original two-dimensional
problem into a one-dimensional one, in which all unknown variables depend on time and
a horizontal coordinate. The partial differential equations derived correspond to the con-
servation of mass and momentum. The solution of these equations is constructed by the
finite difference method and an approximate discrete integration in the time domain. In
order to estimate the accuracy of this formulation, theoretical results obtained for a specific
problem were compared with experimental measurements carried out in a laboratory flume.
The comparison shows that the proposed theoretical formulation is an accurate description
of long waves propagating in water of variable depth.
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1. Introduction

An important part of the theory of water waves is concerned with the analysis of
the propagation of waves in a fluid of small, non-uniform depth. Since wave lengths
are large compared to the water depth, we can speak of long waves propagating in
shallow water. Usually, these waves undergo transformations depending on changes
in the water depth. In a theoretical description of this phenomenon, we introduce
certain approximations which simplify the analysis of the problem considered. Gen-
erally, these approximations enable us to eliminate one of the spatial dimensions of
the description. For instance, a three-dimensional flow problem may be reduced to
a two-dimensional one. In many applications it can also be assumed that the wave
amplitude is a small quantity. In order to develop a more accurate theory, however,
finite amplitudes of these waves should be taken into account. In the literature on
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the subject, there are two main approaches to describing the long wave phenomenon
(Ursell 1953). The first is based on the assumption that the pressure at any point in
the fluid is equal to the hydrostatic head of water above that point. This assumption
of the hydrostatic pressure leads to the so-called Airy’s shallow water theory of
long waves. For a two-dimensional problem, considered in this paper, this theory
provides a system of two non-linear partial differential equations:

∂u
∂t
+
∂

∂x

(
gh +

1
2

u2
)
= 0,

∂h
∂t
+
∂

∂x
(uh) = 0,

(A)

where u(x, t) is the horizontal velocity component independent of the depth coordi-
nate, h(x, t) is the water depth, g is the gravitational acceleration, x is the horizontal
coordinate, and t is the time.

In the second approach to the long wave phenomenon, the description of the fluid
pressure takes into account the fluid acceleration. With this dynamic description of
the pressure, we arrive at the so-called Boussinesq theory of long waves in shallow
water (Whitham 1974). For the latter case, the representative system of differential
equations for the two-dimensional problem reads

∂u
∂t
+
∂

∂x

(
gh +

1
2

u2 +
1
3

h0
∂2h
∂t2

)
= 0,

∂h
∂t
+
∂

∂x
(uh) = 0,

(B)

where h0 is the constant, still water depth.
A formulation similar to Boussinesq’s one was developed by Korteveg and de

Vries, who derived a single non-linear equation for the free surface elevation known
as the KdV equation (Whitham 1974). With regard to equations (A), Stoker (1948)
derived a complete solution to these equations by the method of characteristics.
In particular, he presented closed solutions to the problem of shallow water waves
propagating along a sloping shore with a constant slope. Since this work by Stoker,
a number of works have appeared in which equations (A) are a starting point in
analyses of specific problems considered. Among other contributions, an important
one has been made by Carrier and Greenspan (1958). On the basis of shallow
water approximations, these authors discovered a hodograph transformation which
enabled them to transform the original non-linear differential equations, defined in
a physical space, into a single linear equation for a potential function defined in
a transformation space. This linear equation enabled them to calculate the run-up
of a wave of small amplitude on a sloping beach. It was shown that the wave can
climb the beach without breaking. In order to obtain a better description of steep
waves propagating in water of variable depth, Peregrine (1967) derived Boussinesq
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equations in which depth-averaged velocity was used as a dependent variable. The
standard Boussinesq equations are based on the assumption of weak dispersion
and weak non-linearity, and thus, they are restricted to shallow water. In order
to improve linear dispersion characteristics in deeper water, Madsen et al (1991)
derived a new form of Boussinesq equations by adding third order terms to the
momentum equations, written for a constant water depth. These terms, derived
from the long wave equations, are insignificant in shallow water, and thus they do
not affect the accuracy of the description. Another set of Boussinesq equations was
derived by Nwogu (1993), who used the velocity at a certain distance from the still
water level as the velocity variable instead of the commonly used depth-averaged
velocity. In this way the linear dispersion properties of Boussinesq equations have
been improved.

Boussinesq-type equations for surface gravity waves are also discussed in Mad-
sen and Schäffer (1999), where a number of formulations of the problem, known
from the literature, are reviewed. In particular, the authors discuss the velocity
potential formulations in terms of an infinite power series expansion. In most of
the formulations, the final result is a set of partial differential equations dependent
on selected approximations in the description of the phenomenon.

A variety of problems related to the description of shallow water waves
are described in Dingemans’s monograph (1997). In particular, a number of
Boussinesq-type models for uneven bottoms are discussed in detail. This book
provides techniques for analysing problems of wave propagation in water of
non-uniform depth. In most of the derivations of Boussineq-like equations, the start-
ing point is a power series solution to the Laplace equation for the velocity potential.
It may be important to add here that all Boussinesq-like models are asymptotically
equivalent but may differ in practical applicability (Dingemans 1997).

In this paper, an alternative derivation of Boussinesq-type equations for water
of variable depth is presented. The starting point of our analysis are formulae
describing the velocity field in a fluid of variable depth. Velocity components are
expressed in the form of power series expansions with respect to the water depth.
The derivation of equations describing the fluid motion is similar to that given in
Van Groesen’s and de Jager’s monograph (1999) for the derivation of the Korteweg
and de Vries equation for shallow water waves propagating in a fluid of constant
depth. The procedure developed in this paper provides a hierarchy of non-linear
partial differential equations describing the fluid motion. In order to estimate the
accuracy of the formulation, selected results of theoretical solutions were compared
with experimental data obtained in a laboratory flume.

2. Non-linear Theory of Waves in Water of Variable Depth

In what follows we confine our attention to a two-dimensional potential motion of
an incompressible non-viscous fluid, as shown schematically in Fig. 1. A water wave
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arrives from the left and propagates to the right, in the direction of positive values
of the x coordinate. Our main goal is to construct a solution that would be valid
for waves of finite heights. The starting point of the analysis is the derivation of
differential equations of the problem considered. Thus, with respect to the Cartesian
system of coordinate axes shown in the figure, let us assume that the two components
of the velocity field, i.e. u(x, z, t) and v(x, z, t), are expressed in the following form:

Fig. 1. A long wave propagating in fluid of variable depth

u(x, y, t) =
∞∑

n=0

(z + hb)n fn(x, t),

v(x, y, t) =
∞∑

n=0

(z + hb)nϕn(x, t),
(1)

where hb(x) describes the bottom elevation (the still water depth), and f0, f1, f2, ...
and ϕ0, ϕ1, ϕ2, ... are unknown functions of the description.

The fluid is assumed to be incompressible, and thus

∂u
∂x
+
∂v

∂z
= 0. (2)

From the substitution of equations (1) into the above condition one obtains

∞∑
n=0

(z + hb)n [
f ′n + (n + 1)(mfn+1 + ϕn+1)

]
= 0, (3)

where hereinafter the primes denote differentiation with respect to x.
At the fluid bottom z = −hb(x), the normal component of the velocity vector

should be equal to zero, and thus we have

v [x,−hb(x), t] =
dhb

dx
u [x,−hb(x), t] , → ϕ(x, t) = −mf0(x, t), (4)

where dhb/dx = m(x).
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By collecting terms with the same power in (z + hb) in equation (3), we arrive
at the system of equations

f ′n−1 + mnfn + nϕn = 0, n = 1, 2, . . . (5)

From relations (4) and (5) the following formulae result:

ϕ0 = −mf0,

ϕn = −

(
mfn +

1
n

f ′n−1

)
, n = 1, 2, . . . (6)

The incompressibility condition and the boundary condition at the fluid bottom en-
able us to express all functions ϕ0, ϕ1, ϕ2, . . . in terms of the functions f0, f1, f2, . . ..
Moreover, for the assumed rotation-free fluid motion, the following condition holds:

∂u
∂z
−
∂v

∂x
= 0, (7)

which gives
∞∑

n=1

(z + hb)n−1
[
n fn − ϕ′n−1 − mnϕn

]
= 0. (8)

As in the previous case, the collection of terms with the same power in (z + hb),
leads to the formula

fn =
1
n
ϕ′n−1 + mϕn, n = 1, 2, . . . (9)

From equations (6) and (9) the following recurrence formulae may be derived:

fn =
1
n

1
1 + m2

(
ϕ′n−1 − mf ′n−1

)
,

ϕn = −
1
n

1
1 + m2

(
f ′n−1 + mϕ′n−1

)
, n = 1, 2, . . .

(10)

On account of equations (6), the vertical velocity component may be written in the
form

v = −

∞∑
n=1

[
m(z + hb)n−1 fn−1 +

1
n

(z + hb)n f ′n−1

]
(11)

For points at the free surface of the fluid, i.e. for z = η(x, t) = h(x, t) − hb(x),
where η(x, t) is the free surface elevation, the fluid pressure equals the atmospheric
pressure, which is taken as a constant. Therefore, the differentiation of the pressure
with respect to the arc length s of η(x, t) gives

∂p
∂x
+

(
∂h
∂x
− m

)
∂p
∂z

∣∣∣∣∣∣
z=h−hb

= 0, (12)
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where h(x, t) is the water depth.
The derivatives of the pressure in the above equation result from Euler’s equa-

tions of fluid motion

−
1
ρ

∂p
∂x
=
∂u
∂t
+

1
2
∂

∂x

(
u2 + v2

)
,

−
1
ρ

∂p
∂z
= g +

∂v

∂t
+

1
2
∂

∂z

(
u2 + v2

)
,

(13)

where ρ is the fluid density, and g is the gravity acceleration.
The substitution of equations (13) into equation (12) gives

∂u
∂t
+

1
2
∂

∂x

(
u2 + v2

)
+

(
∂h
∂x
− m

) [
∂v

∂t
+

1
2
∂

∂z

(
u2 + v2

)
+ g

]∣∣∣∣∣∣
z=h−hb

= 0. (14)

This formula describes the dynamic boundary condition for the upper surface of
the fluid. At the same time, the kinematic boundary condition for the free surface
reads

∂h
∂t
+

(
∂h
∂x
− m

)
u − v

∣∣∣∣∣∣
z=h−hb

= 0. (15)

These boundary conditions enable us to derive the final differential equations of the
problem discussed. On account of equations (1) and (11), the dynamic boundary
condition assumes the form

∞∑
n=0

hn∂ fn
∂t
+ (h′ − m)

g − ∞∑
n=1

(
mhn−1∂ fn−1

∂t
+

hn

n
∂ f ′n−1

∂t

)+
+

 ∞∑
n=0

hn fn

 · ∞∑
n=1

hn−1
(
f ′n−1 + nh′ fn

)
+

 ∞∑
n=1

(
mhn−1 fn−1 +

hn

n
f ′n−1

)×
×

∞∑
n=1

hn−1
{
(h′ − m) f ′n−1 −

[
1 − m(h′ − m)

]
n fn

}
= 0.

(16)

In a similar way, the following kinematic boundary condition is obtained:

∂h
∂t
+

(
h′ − m

)
·

∞∑
n=0

hn fn +
∞∑

n=1

(
mhn−1 fn−1 +

hn

n
f ′n−1

)
= 0. (17)

Up to this point no approximations have been introduced. The differential equa-
tions derived have a complicated structure. In order to obtain final equations of
the problem, all functions fn (n = 1, 2, . . .) together with their derivatives, entering
equations (16) and (17), should be expressed in terms of the function f0(x, t) and its
derivatives. Such a procedure may be carried out by means of recurrence formulae
(10). Our further discussion will be confined to long water waves, propagating in
a fluid of small depth with a small bottom slope, for which it is justifiable to neglect
higher order terms in the description mentioned above.
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3. Approximations in the Description of Long Waves

Water waves propagating in a fluid of small depth are characterised by two important
parameters: µ = h0/l, i.e. the ratio of the still water depth to a typical wave length,
and ε = a0/h0 , i.e. the ratio of the wave amplitude to the water depth (Nwogu
1993, Dingemans 1997). For long waves, the first of these parameters is assumed
to be a small quantity – typically smaller than 1/10, whereas the second parameter
is a quantity of order one (Dingemans 1997). At the same time, the ratio h/h0 of
the water depth to a typical water depth is also a quantity of order one. For uneven
bottoms, it is assumed that the bottom slope |dhb/dx| = O(µ) is a small quantity,
i.e. appreciable changes in the water depth may occur only in a region of a typical
water wave length.

In deriving an approximate description of long waves, it is desirable to examine
first the range of magnitudes of the subsequent terms in equations (1). In order to
simplify the further discussion, we confine our attention to the case of a constant
bottom slope m = const. For this case, the following relations are obtained from
recurrence formulae (10):

ϕ0 = −mf0,

f1 = −
2m

1 + m2 f ′0 , ϕ1 = −
1 − m2

1 + m2 f ′0 ,

f2 = −
1
2

1 − 3m2

(1 + m2)2 f ′′0 , ϕ2 =
1
2

3m
(1 + m2)2

(
1 −

m2

3

)
f ′′0 ,

f3 =
1
6

4m
(1 + m2)3 (1 − m2) f ′′′0 , ϕ3 =

1
6

1
(1 + m2)3

(
1 − 6m2 + m4

)
f ′′′0 . . . .

(18)

Knowing that m = O(µ) and neglecting the square and higher powers of the bottom
slope, equations (18) are reduced to the following form:

f0, ϕ0 = −mf0,

f1 ' −2mf ′0 , ϕ1 ' − f ′0 ,

f2 ' −
1
2

f ′′0 , ϕ2 ' −
3
2

mf ′′0 ,

f3 '
2
3

mf ′′′0 , ϕ3 '
1
6

f ′′′0 , . . .

f4 '
1
24

f0′′′′, ϕ4 ' −
5
24

mf0′′′′, . . .

(19)

From the approximations, it may be seen that every other consecutive term
in the formulation depends directly on the bottom slope. Moreover, the respective
components of the functions fn and ϕn (n = 1, 2, . . .), with or without the bottom
slope term (min the relations), are shifted by one. This means that in the description
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of the velocity field in shallow water of insignificantly variable depth (in the limit –
a constant water depth), the most important terms in the description of the horizontal
component of the velocity are those with even powers of the water depth, while in
the case of the vertical components, the most important are terms with odd powers
of the depth. An important feature of the description is that higher components of the
velocity depend on higher order derivatives of the fundamental function describing
the horizontal velocity at the fluid bottom. Thus, from the above relations it follows
that

f2n ≈ (−1)n f (2n)
0 ,

f2n−1 ≈ (−1)nmf (2n−1)
0 , n = 1, 2, . . . ,

(20)

where f (2n)
0 ( f (2n−1)

0 ) means the 2n (2n − 1) derivative with respect to the horizontal
coordinate of the function f0(x, t).

For the long waves considered, the derivative with respect to the horizontal
coordinate of the function f0(x, t) is a small quantity. h f ′0O(µ). This means that, on
account of equations (20), it is justifiable to confine our attention to a few lowest
order terms in describing the long wave phenomenon. In addition, with respect to
relations (19) for a small bottom slope, the multipliers of the water depth powers
in equation (16) may be further approximated as follows:

h0 : α
∂ f0
∂t
+ βg + f0( f ′0 + h′ f1) + mf0(β f ′0 − α f1) =

≈ α
∂ f0
∂t
+ βg + α f0 f ′0 ≈

∂ f0
∂t
+ (h′ − m)g + f0 f ′0 ,

(21)

h1 : α
∂ f1
∂t
− β
∂ f ′0
∂t
+ f0( f ′1 + 2h′ f2) + f1( f ′0 + h′ f1)+ ∼ +mf0(β f ′1 − 2α f2)+

+(mf1 + f ′0)(β f ′0 − α f1) =≈ −(h′ + m)
∂ f ′0
∂t
− (h′ + m) f0 f ′′0 +

+(h′ − m)( f ′0)2 ≈ −(h′ + m)
(
∂ f ′0
∂t
+ f0 f ′′

)
,

(22)

h2 : α
∂ f2
∂t
−

1
2
β
∂ f ′1
∂t
+ f0( f ′2 + 3h′ f3) + f1( f ′1 + 2h′ f2) + f2( f ′0 + h′ f1)+

+(mf0)(β f ′2 − 3α f3) + (mf1 + f ′0)(β f ′12 − 2α f2)+

+

(
mf2 +

1
2

f ′1

) (
β f ′0 − α f1

)
=≈

(
−

1
2
α + mβ

)
∂ f ′′0
∂t
+

1
2

( f ′0 f ′′0 − f0 f ′′′0 ) ≈

≈
1
2

(
−
∂ f ′′0
∂t
+ f ′0 f ′′0 − f0 f ′′′

)
,

(23)
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h3 : α
∂ f3
∂t
−

1
3
β
∂ f ′2
∂t
+ f0( f ′3 + 4h′ f4) + f1( f ′2 + 3h′ f3) + f2( f ′1 + 2h′ f2)+

+ f3( f ′0 + h′ f1) + (mf0)(β f ′3 − 4α f4) + (mf1 + f ′0)(β f ′2 − 3α f3)+

+

(
mf2 +

1
2

f ′1

) (
β f ′1 − 2α f2

)
+

(
mf3 +

1
3

f ′2

)
(β f ′0 − α f1) =

≈

(
2
3

mα +
1
6
β

)
∂ f ′′′0

∂t
+

1
6

(3m + h′) f0 f ′′′′0 −
2
3

h′ f ′0 f ′′′0 +

+
1
2

(h′ − m) f ′′0 f ′′ ≈
1
6

(3m + h′)
(
∂ f ′′′0

∂t
+ f0 f ′′′′

)
,

(24)

where α = 1 − m(h′ − m) and β = h′ − m.
With respect to the above approximations, the dynamic boundary condition for

the free surface of the fluid is assumed in the following form:

∂ f0
∂t
− h(h′ + m)

∂ f ′0
∂t
−

1
2

h2∂ f ′′0
∂t
+

1
6

h3(h′ + 3m)
∂ f ′′′0

∂t
+ g(h′ − m) + f0 f ′0+

− h(h′ + m) f0 f ′′0 +
1
2

h2( f ′0 f ′′0 − f0 f ′′′0 ) +
1
6

h3(h′ + 3m) f0 f0′′′′ = 0.
(25)

Similarly, the kinematic boundary condition for the free surface is

∂h
∂t
+ h′ f0 + h(h′ f1 + f ′0) + h2

(
h′ f2 +

1
2

f ′1

)
+ h3

(
h′ f3 +

1
3

f ′2

)
=

≈
∂h
∂t
+ (h f0)′ −

1
2

h2(h′ + 2m) f ′′0 −
1
6

h3 f ′′′0 (1 − 4h′m) = 0.
(26)

For specific cases considered, some of the terms entering equations (25) and (26)
may be ignored. In our further discussion, we neglect products of the space deriva-
tives in these equations and confine our attention to the second order powers in
the dynamic boundary condition and to the third order powers in the kinematic
boundary condition. At this point a remark is needed. As mentioned above, the
most important in describing horizontal velocity components are terms correspond-
ing to even powers of the water depth, while for the vertical component the most
important are odd powers. Therefore, in equation (26) the third order power term
is retained. For a specific case considered, this term may also be ignored. Thus,
taking these assumptions into account, we arrive at a system of Boussinesq-like
equations for long waves propagating in shallow water

∂ f0
∂t
−

1
2

h2 ∂
3 f0
∂t∂x2 +

∂

∂x

[
g(h − hb) +

1
2

f 2
0

]
−

1
2

h2 f0
∂3 f0
∂x3 = 0 ,

∂h
∂t
+
∂

∂x
(h f0) −

1
6

h3∂
3 f0
∂x3 = 0.

(27)
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This system of equations is similar to the one presented in Dingemans’s monograph
(1997). The linearization of these equations for a constant still water depth (hb =

const) leads to the system of equations

∂ f0
∂t
−

1
2

h2
0
∂3 f0
∂t∂x2 + g

∂η

∂x
= 0 ,

∂η

∂t
+ h0
∂ f0
∂x
−

1
6

h3
0
∂3 f0
∂x3 = 0,

(28)

where h(x, t) = h0 + η(x, t).
Let us consider a small amplitude periodic wave with frequency ω and wave

number k
f0 = u0 exp [i(kx − ωt] ,
η = a0 exp [i(kx − ωt] , (29)

where u0 and a0 denote amplitudes of respective variables.
From the substitution of (29) into (28) the following dispersion relation is ob-

tained

ω2 = gk(kh0)
1 +

1
6

(kh0)2

1 +
1
2

(kh0)2
� gk

[
(kh0) −

1
3

(kh0)3
]
. (30)

The dispersion derived is close to the standard linear dispersion formula

ω2 = gk tanh(kh0) = gk
[
(kh0) −

1
3

(kh0)3 +
2
15

(kh0)5 − · · ·

]
. (31)

On account of equation (30), one may calculate the associated phase speed c f =

ω/k of the periodic wave. On the other hand, for relatively long waves with finite
amplitudes propagating in water of constant depth, equations (27) may be simplified
to the form inherent in the assumption that the pressure is given as in hydrostatics
(Stoker 1948)

∂ f0
∂t
+
∂

∂x

(
gh +

1
2

f 2
0

)
= 0,

∂h
∂t
+
∂

∂x
(h f0) = 0 .

(32)

For the latter case, one may show that the wave speed c f =
√
gh, and

f0 = 2
( √
gh −

√
gh0

)
= 2

√
gh0

( √
1 + η/h0 − 1

)
�

√
gh0η/h0, (33)

where h0 is the still water depth, η is the free surface elevation, and h = h0 + η.
In our further discussion, however, we shall confine our attention to non-linear

equations (27), which are assumed to properly describe the main features of the
phenomenon of long water waves propagating in a fluid of insignificantly variable
depth.
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4. Reduction of the Problem to a System of Ordinary Differential
Equations

In the preceding section, we derived the system of partial differential equations
(27), describing the plane problem of waves propagating in water of non-uniform
depth. This system was derived under assumptions that enabled us to confine our
attention to the lowest-order terms of the expansion procedure with respect to the
water depth. However, even if the lowest-order terms are taken into account, the
resulting equations are still non-linear partial differential equations, and thus, they
are difficult to solve analytically. Therefore, in order to solve the problem, we resort
to an approximate method allowing us to replace the partial differential equations
with a system of ordinary differential equations. In the derivation of the latter
equations, the continuous fluid domain is replaced with a set of nodal points, and
the spatial derivatives in equations (27) are replaced with finite difference quotients
written at these points. In the case of an infinite fluid domain, however, the formal
approach to the problem leads to an infinite set of ordinary differential equations.
In order to overcome this difficulty, we may confine our attention to a finite part
of the infinite fluid domain with appropriate boundary conditions assumed at the
boundary between the finite and infinite parts. The boundary conditions should
allow approaching waves to pass through the boundary without any reflection. This
procedure leads to a finite system of difference equations for nodal values of the
variables, dependent on time. To make the further discussion clear, let us consider
the generation of waves in a finite layer of a fluid of variable depth. It is assumed
that the fluid, initially at rest, is forced to move by a piston-type generator placed
at x = 0 and starting to move at a certain point in time. Such a case corresponds
directly to experiments carried out in a laboratory flume. At the generator face
x = xg(t), we have the boundary condition that the fluid velocity f0(xg, t) equals the
generator velocity ẋg(t). At the boundary x = L, a condition should be imposed that
waves are not reflected from the boundary. For the initial value problem considered,
the generated wave will reach the right boundary x = L after a finite time measured
from the starting point. This means that for a sufficiently long L and a relatively
short time, it is reasonable to assume that at the right boundary the fluid it at
rest. In accordance with the finite differences formulation, instead of the continuous
functions f0(x, t), h(x, t) and hb(x), we consider a finite set of their values at selected
nodal points: x j = j · a ( j = 1, 2, . . . ,M), where j denotes the node number and a is
a constant spacing of the nodal points. In the discrete formulation, we have to replace
the space derivatives, entering equations (27), with appropriate finite difference
quotients. Such a procedure is not unique. In particular, in deriving equations for
the first nodal point x1 = a, we have to take into account the boundary condition at
the moving boundary x = xg(t). With regard to the first and second space derivatives
of the velocity f0(x = a, t) at the first nodal point, we resort to the finite difference
approximations
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∂ f0
∂x
≈ −

a
b(a + b)

f 0 +
a − b
ab

f 1 +
b

a(a + b)
f 2,

∂2 f0
∂x2 ≈

2
b(a + b)

f 0 −
2
ab

f 1 +
2

a(a + b)
f 2 ,

(34)

derived with the help of the Taylor formula for a non-uniform spacing of points, i.e.
for b = a − xg(t) and a, and for the nodal values f 0 = ẋg(t), f 1, f 2 of the function f0
at subsequent points. The third derivative may be obtained with a forward difference
formula (Hirsch 1992). On the other hand, in order to calculate the first derivative of
the water depth at the first nodal point, it is convenient to use the Gregory-Newton
extrapolation formula (Chan and Street 1970)

f r =
11
3

f r+1 − 5 f r+2 + 3 f r+3 −
2
3

f r+4 (35)

where the superscripts denote the numbers of consecutive nodal points.
In particular, the above formula has also been used for calculating the third

derivative of the velocity at the first nodal point. For the remaining points (1 < j <
M), the space derivatives are obtained from central difference formulae.

In accordance with these finite difference approximations, instead of the con-
tinuous functions f0(x, t) and h(x, t), we operate with the time-dependent vectors
[f0(t)] and [h(t)], and, instead of the partial differential equations, we have the
system of the ordinary differential equations

RA( f j , h j , t)
df0

dt
+ FA( f j , h j , t) = 0,

dh
dt
+GA( f j , h j , t) = 0,

(36)

where RA is a square matrix, and FA and GA are vectors resulting from equations
(27).

For the initial value problem considered, the equations in the first row of (36)
depend on the boundary conditions at the boundary x = xg(t). For the displacement
xg(t) of the generator plate, the tri-diagonal matrix RA in (36) is written in the
form

RA =



K• −α•

−α K −α
−α K −a

· · ·

· · ·

−α K


, (37)
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where α• = (h1)2

a(a+b) , K• = 1 + (h1)2

ab , α = 1
2

( h j

a

)2
, and K = 1 +

( h j

a

)2
with j = 1, 2, · · · ,N ,

and b = a − xg(t). Now, from equations (36), it follows that

df0

dt
= FA×,

dh
dt
= GA×,

(38)

where FA× = −RA−1 · FA, and GA× = −GA.
It should be noted here that equations (38) are non-linear (the vectors FA×

and GA× depend on the unknown vectors f0 and h). Therefore, in order to find
a solution of the equations, it will be necessary to resort to an approximate numerical
integration in the time domain.

5. Numerical Solutions and Experiments in a Laboratory Flume

In order to learn more about this formulation and to estimate its applicability, in
this section we shall integrate equations (38) for specific problems corresponding
directly to experiments in a laboratory flume. In this way we shall estimate the
accuracy of the approximate description of the non-linear problem considered. Let
us then consider the initial-value problem of the generation of waves in a wave
flume, as shown schematically in Fig. 2. The waves are generated by a piston-type
wave maker (the rigid vertical wall in the figure), which starts to move at a certain
point in time. The generated waves propagate over a rigid underwater obstacle (two
inclined ramps with a segment of constant, small water depth) installed at a distance
of 9 m from the generator plate. The motion of the wave maker is assumed in the
following form (Wilde and Wilde 2001):

Fig. 2. Generation of waves in water of non-uniform depth. The vertical dashes indicate the
distribution of wave gauges

xg(t) = Ag [A(τ) cos(ωt) + D(τ) sin(ωt)] , (39)

where Ag is the amplitude of the generation, ω is the angular frequency, τ = ηt is
the non-dimensional time factor, η is a parameter responsible for a growth in time
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of the generator displacement, and the relevant terms in the square brackets are
defined as follows:

A(τ) =
1
3!
τ3 exp(−τ),

D(τ) = 1 −
(
1 + τ +

1
2!
τ2 +

1
3!
τ3

)
exp(−τ).

(40)

On the basis of the latter equations, it is a simple task to calculate the generator
velocity ẋg(t) and its acceleration ẍg(t). One can check that for η = 2, assumed in
our calculations, the generator motion approaches a steady-state harmonic motion
within the first few periods of time. At the same time, all important parameters, i.e.
displacement, velocity and acceleration of the generator face, are equal to zero at
the initial point in time, i.e. at t = 0+. For the assumed generator frequency ω, the
length λ of the surface wave may be obtained from equation (30).

In order to find a solution of equations (38), we resort to a numerical integration
of the equations in the time domain by the fourth order Runge-Kutta method. With
this method, the intermediate parameters of the discrete integration read (Björk and
Dahlquist 1983)

k1 = tFA×
(
tn, fn

0 ,h
n
)
,

k2 = tFA×
(
tn +

t
2
, fn

0 +
k1

2
,hn +

l1
2

)
,

k3 = tFA×
(
tn +

t
2
, fn

0 +
k2

2
,hn +

l2
2

)
,

k4 = tFA×
(
tn + t, fn

0 + k3,hn + l3
)
,

(41)

and
l1 = tGA×

(
tn, fn

0 ,h
n
)
,

l2 = tGA×
(
tn +

t
2
, fn

0 +
k1

2
,hn +

l1
2

)
,

l3 = tGA×
(
tn +

t
2
, fn

0 +
k2

2
,hn +

l2
2

)
,

l4 = tGA×
(
tn + t, fn

0 + k3,hn + l3
)
,

(42)

where t = tn+1 − tn denotes the time step length.
The solution at the successive point in time, i.e. at tn+1, is obtained from the

formulae

fn+1
o = fn

o +
1
6

(k1 + 2k2 + 2k3 + k4) ,

hn+1 = hn +
1
6

(l1 + 2l2 + 2l3 + l4) .
(43)
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Numerical calculations were performed for the initial problem of the generation
of waves in a finite fluid domain of length L = 60 m and depth h = 0.5 m. In the dis-
crete approach, the horizontal length was replaced with equally spaced nodal points.
The distance between consecutive points of the net was chosen to be a = 0.1 m.
At the same time, the distance between the first nodal point and the generator face
depended on time b(t) = a − xg(t). In this way, instead of a continuous description
in space, we have a description of a finite set of N = 600 nodal points in time. In the
Runge-Kutta numerical integration it is assumed that the time step is ∆t = 0.01 s.
This time step satisfies the Courant condition (Toro 1997), which requires that the
ratio of the wave celerity to the ‘net velocity’ be less than one, i.e. c f∆t/a < 1.

With respect to the initial-value problem considered and the assumed condition
that the fluid is at rest at the boundary x = L, one can obtain the maximum time
allowed in the numerical integration. As already mentioned, in addition to numerical
calculations, experiments in a laboratory flume were carried out. The experiments
were conducted in a wave flume of the Institute of Hydro-Engineering of the Polish
Academy of Sciences in Gdańsk. The wave channel of a rectangular cross-section
(0.6 m wide and 1.4 m high) with glass sides is 64 m long. At one end of the channel
a piston-type wave generator is installed. At the opposite end, there is an inclined
artificial ramp, which absorbs the energy of incoming waves. The experiments were
conducted for an assumed set of amplitudes and generation frequencies. Some of
the results obtained in numerical computations and recorded in the experiments are
presented in Figures 3, 3a, 3b. The figures show the evolution in time of surface
waves calculated and recorded in the experiments at selected points of the hydraulic
flume. The consecutive figures correspond to waves of growing lengths.

The plots in Figure 3 correspond to the generation frequency ω = 2.6201 s−1

and the generator displacement amplitude Ag = 2.64 cm. The first plot in the figure
illustrates the generator motion with the solid line showing experimental results
obtained in the laboratory flume and the dashed line representing the theoretical
solution. In the subsequent plots theoretical results are compared with data obtained
in the experiments. From the graphs it may be seen that changes in the water depth
induce significant changes in the surface elevation, where emerging higher compo-
nents become more important (gauges S4, S5 and S6 in the figure). The comparison
shows that the theoretical model provides reliable, fairly accurate results. Fig. 3a
illustrates the case of wave generation with ω = 1.9252 s−1 and the generator am-
plitude Ag = 4.62 cm. The last figure (3b) shows the water elevation corresponding
to the frequency ω = 1.5159 s−1 and the generator amplitude Ag = 6.54 cm.

From the plots in all figures, it can be seen that the wave phases obtained
in numerical solutions are practically equal to those measured in the laboratory
experiments. Small discrepancies between the theory and the experiments seem
to result from the hydraulic system steering the generator motion. The highest
elevations of the waves occur in the area of the smallest water depth. It may also
be seen that the results of computations exceed the levels of waves measured in the
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Fig. 3. Comparison of theoretical results with data recorded in experiments



Boussinesq-type Equations for Long Waves in Water of Variable Depth 19

Fig. 3a. Continued
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Fig. 3b. Continued
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laboratory experiments, which is due to the lack of a dissipation mechanism in the
theoretical model developed above.

6. Concluding Remarks

The theoretical description of long waves propagating in water of variable depth,
presented above, is based on the fundamental assumption that the waves may be
accurately described by means of a few lowest order terms of the power series
expansion with respect to the water depth. The final differential equations derived
correspond to the conservation of mass and momentum of a vertical column of
water. A validation of the proposed theoretical model was performed by comparing
its results with data obtained in experiments carried out in a laboratory flume. The
comparison shows that the formulation describes well the main features of waves
propagating in water of insignificantly variable depth. In a rather formal way, it
is possible to take into account higher order terms in the formulation. With these
terms, however, one can face more difficulties in integrating resulting differential
equations of the problem considered.
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