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Abstract—In this paper, we consider a two-level 0-1 program-

ming problem in which there is not coordination between the

decision maker (DM) at the upper level and the decision maker

at the lower level. We propose a revised computational method

that solves problems related to computational methods for ob-

taining the Stackelberg solution. Specifically, in order to im-

prove the computational accuracy of approximate Stakelberg

solutions and shorten the computational time of a computa-

tional method implementing a genetic algorithm (GA) pro-

posed by the authors, a distributed genetic algorithm is intro-

duced with respect to the upper level GA, which handles de-

cision variables for the upper level DM. Parallelization of the

lower level GA is also performed along with parallelization of

the upper level GA. The proposed algorithm is also improved

in order to eliminate unnecessary computation during oper-

ation of the lower level GA, which handles decision variables

for the lower level DM. In order to verify the effectiveness of

the proposed method, we propose comparisons with existing

methods by performing numerical experiments to verify both

the accuracy of the solution and the time required for the

computation.

Keywords—distributed genetic algorithm, Stackelberg solution,

two-level 0-1 programming problem.

1. Introduction

In the real world, we can often encounter situations that

there are multiple decision makers (DMs) in hierarchically

structured organizations, and decisions may be taken se-

rially or simultaneously in order to optimize each of the

objectives. This kind of problem has been formulated as

a two-level programming problem [1]. In two-level pro-

gramming problems, the upper level DM makes his/her

decision first, and then, with full knowledge of the deci-

sion of the upper level DM, the lower level DM makes

his/her decision in order to optimize his/her own objec-

tive function. According to this rule, the upper level DM

also makes a decision so as to optimize the objective func-

tion of self. The solution defined as the above mentioned

procedure is a Stackelberg solution. In this paper, both

the upper level and the lower level have one DM, and the

problem is treated as a two-level 0-1 programming problem

in which both DMs treat all of their decision variables as

0-1 variables.

As an overview of research dealing with two-level program-

ming problems that include discrete variables, Bard et al.

presented an algorithm based on the branch-and-bound

approach in order to derive the Stackelberg solution for

two-level 0-1 programming problems [2] and two-level

mixed integer programming problems [3]. Wen et al. [4]

have presented a computation method for obtaining the

Stackelberg solution to two-level programming problems

which have 0-1 variables for the decision variables in the

upper level and real variables for the decision variables in

the lower level.

On the other hand, the adaptive process of systems in the

natural world has been explained, and genetic algorithms

(GAs) which imitate the evolution occurring in living or-

ganisms have been receiving attention at international con-

ferences related to GAs, publications by Goldberg [5], as

have methodologies for optimization, adaptation and learn-

ing. GAs have also been adopted for a variety of combi-

natorial optimization problems, and their effectiveness has

been reported [6].

An example of research related to two-level programming

problems using GAs is given by Anandalingam, et al. [7]

which presents a method for deriving a Stackelberg so-

lution for two-level linear programming problems. Also,

Nishizaki, et al. presented an algorithm based on GAs in

order to derive the Stackelberg solution for two-level inte-

ger programming problems [8] and two-level mixed integer

programming problems [9]. In order to derive a Stack-

elberg solution for 0-1 programming problems related to

two-level decentralized systems, the authors [10] have also

proposed a computational method that adopts the double

string proposed by Sakawa, et al as the individual repre-

sentation. In order to improve the computational accuracy

of approximate Stakelberg solutions, the authors have pro-

posed computational methods that implement sharing [11]

and cluster analysis [12] methods. Furthermore, the au-

thors have proposed a computational method using parallel

genetic algorithm [13]. Use of these methods allows for the

derivation of approximate Stackelberg solutions with rela-

tively high precision and in a relatively short time, but there

is still room for improvement, particularly with regards to

calculation times.

Therefore, this paper focuses on two-level 0-1 program-

ming problems, and proposes an improved computational

method that addresses problems related to the computa-

tional method proposed by the authors for deriving the

Stackelberg solution. Specifically, a distributed genetic al-

gorithm is introduced with respect to the upper level GA,

which handles decision variables for the upper level DM,

in order to improve the computational accuracy of approxi-
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mate Stackelberg solutions and decrease the computational

time of a computational method implementing a genetic

algorithm proposed by the authors. Also, parallelization

of the lower level GA is performed along with paralleliza-

tion of the upper level GA. The proposed algorithm is also

improved in order to eliminate unnecessary computation

during operation of the lower level GA, which handles de-

cision variables for the lower level DM. In order to verify

the effectiveness of the proposed method, we propose com-

parisons with the existing method and the computational

method using parallel GA by performing numerical exper-

iments to verify both the accuracy of the solution and the

time required for the computation.

2. Two-Level 0-1 Programming Problem

For the sake of brevity, we denote the upper and lower level

DMs by DM1 and DM2, respectively. The two-level 0-1

programming problem is expressed as

maximize
x

z1(x,y) = c1x + d1y

where y solves

maximize
y

z2(x,y) = c2x + d2y

subject to Ax + By ≦ b

x ∈ {0,1}n1
,y ∈ {0,1}n2

,



























(1)

where x = (x1, . . . ,xn1
)T , and y = (y1, . . . ,yn2

)T are the vec-

tors of decision variables for DM1 and DM2; z1(x,y), and

z2(x,y) respectively represent the objective functions of

DM1 and DM2; c1 = (c11, . . . ,c1n1
), d1 = (d11, . . . ,d1n2

),
c2 = (c21, . . . ,c2n1

), and d2 = (d21, . . . ,d2n2
) denote the co-

efficient vectors of the objective functions; A and B are

m× n1 and m× n2 coefficient matrices in the constraints,

respectively; b = (b1, . . . ,bm)T is a coefficient vector of the

right hand side of the constraints; the superscript T means

transposition of a vector.

For the sake of simplicity, in this paper, it is assumed that

each component of A, B, b, c1, c2, d1, and d2 is positive.

It is possible to express the process for choosing the Stack-

elberg solution for a two-level 0-1 programming problem

in the following manner. Each decision maker completely

knows objective functions and constraints of the opponent

and self, and DM1 first makes a decision and then DM2

makes a decision in order to maximize the objective func-

tion with full knowledge of the decision of DM1. That

is to say, when the decision by DM1 is denoted x̂, DM2

solves the 0-1 programming problem (2) with parameters x̂,

choosing the optimal solution y(x̂) as the rational reaction

to x̂.

maximize
y

z2(x̂,y) = d2y + c2x̂

subject to By ≦ b−Ax̂

y ∈ {0,1}n2











(2)

Under this premise, DM1 also determines x by choosing

the value which maximizes its own objective function. For

problems which adopt the Stackelberg solution to concep-

tualize their solution, it is assumed that there is no consen-

sus among DMs that might mutually constrain decisions.

Putting it another way, their relationship may be described

as non-cooperative.

3. GA Based Computational Method

We propose a computational method through GA in order

to obtain Stackelberg solutions to the two-level 0-1 pro-

gramming problems. In Subsections 3.1, 3.2 and 3.3, first,

we describe fundamental elements of GA, which are cod-

ing procedure, a decoding procedure and genetic operators,

used in the computational method using GA [10]. In this

paper, we call the computational method using GA [10]

normal GA (NGA). Furthermore, we show additional el-

ements used in the proposed computational method using

distributed genetic algorithm and the computational method

using parallel genetic algorithm [13] in Subsections 3.4

and 3.5. Finally, the algorithm used in the proposed com-

putational method using distributed genetic algorithm is de-

scribed in Subsection 3.6.

3.1. Coding and decoding

When solving 0-1 programming problems using GAs,

binary strings are usually adopted to express individu-

als [5], [14]. However, under this representation it is pos-

sible that infeasible individuals that do not satisfy the con-

straints may be generated, so there is a danger that the

performance of the GAs may degrade. Thus, in this pa-

per, a double string [6] is used which is composed of the

substring corresponding to the decision of DM1, x, and

the substring corresponding to the decision of DM2, y, as

shown in Fig.1 in order to derive only feasible solutions.

The decisions of DM1 and DM2 are handled by performing

genetic operators on each sub-individual. We call the GA

operating to the decision x of DM1 the upper level GA,

and the GA operating to the decision y of DM2 the lower

level GA.

← Individual for x → ← Individual for y →

ix(1) · · · ix(n1) iy(1) · · · iy(n2)

Six(1) · · · Six(n1) Siy(1) · · · Siy(n2)

Fig. 1. Double string.

In Fig. 1 six(m) ∈ {0,1}, ix(m) ∈ {1, . . . ,n1}, and for m 6= m
′

it is assumed that ix(m) 6= ix(m
′
). Similarly, siy(m) ∈

{0,1}, iy(m) ∈ {1, . . . ,n2}, and for m 6= m
′

it is assumed

that iy(m) 6= iy(m
′
). Also, in the double string, ix(m), iy(m)

and six(m), siy(m) express indexes of the elements of each

solution vector respectively, and their values.
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In order to generate only feasible solutions, a decoding

algorithm proposed by the authors [10] is also applied to

the upper level and the lower level GA.

3.2. Reproduction

We describe the reproduction operator of the lower

level GA. Substituting the given value x of the decision

variable in the upper level GA and the value of y obtained

by decoding individuals in the lower level GA into the ob-

jective function of DM2, z2(x,y), the value of the eval-

uation function for each individual is obtained. Next, the

fitness value for each individual is derived using linear scal-

ing, and the individuals remaining in the next generation

are determined by applying elitist expected value selection.

We describe the reproduction operator of the upper

level GA. Substituting the value of x obtained by decoding

individual in the upper level GA and the value of the ratio-

nal reaction y(x) obtained by applying the lower level GA

into the objective function of DM1, z1(x,y(x)), the value

of the evaluation function for each individual is obtained.

Next, the fitness value for each individual is calculated by

applying linear scaling and adopting a clustering method.

The individuals remaining in the next generation are deter-

mined by applying elitist expected value selection based on

these fitness values.

3.3. Crossover and Mutation

For double strings, if single-point or multi-point crossover

operators are performed then there is a possibility that in-

feasible individuals may be generated because the indexes

occurring in the offspring, ix(m), ix(m
′
), m 6= m

′
or iy(m),

iy(m
′
), m 6= m

′
, may have the same number. When solv-

ing the traveling salesman problem or the scheduling prob-

lem through GAs, this kind of violation occurs. In order

to circumvent such violation, partially matched crossovers

(PMX) have been devised. In this paper, a modified ver-

sion of PMX is used in order to handle the double strings

proposed by Sakawa et al. [6]. Also, when determining

whether or not to apply the crossover operator, a probabil-

ity pc is used. Its value is set in advance.

PMX procedure

Step 1: For two individuals expressed using double strings,

s1 and s2, two crossover points are set at random.

Step 2: According to PMX, the upper strings of s1 and

s2, along with the corresponding lower strings are

reordered, generating s
′

1
and s

′

2
.

Step 3: For double strings, the offsprings, s
′′

1
and s

′′

2
, result-

ing from the application of the revised PMX are

obtained by exchanging the lower strings between

the two crossover points s
′

1
and s

′

2
.

It is well recognized that the mutation operator plays a role

of local random search in genetic algorithms. In this paper,

the mutation operator is applied to each string, and inver-

sion is used for index strings. For binary strings, mutation

of bit-reverse type is adopted. When applying the mutation

operator to individuals, it is first determined whether or

not the mutation operator will be applied to an individual

according to the mutation probability pm. In the case that

mutation is applied, it is then determined whether to apply

inversion or bit-reverse according to the mutation selection

constant MPum.

Mutation procedure

Step 1: For an individual s, expressed using a double

string, a random number rm is generated. If

rm ≦ MPum, a point on the 0-1 string is chosen at

random and bit-reverse is performed, yielding s
′

1
.

Otherwise, Step 2 is adopted.

Step 2: Two points on the index string are chosen at ran-

dom, and inversion is applied to the substring be-

tween the two points, yielding s
′

2
.

3.4. Application of the parallel genetic algorithm

In genetic algorithms, it is possible to perform parallel pro-

cessing in the greater part of the operations included in the

algorithm. In reproduction operations, however, because it

is necessary to calculate evaluation values for each individ-

ual in a population, and based on that value determine the

fitness of each individual, direct application of parallel pro-

cessing is difficult. Research related to the parallelization

of GAs started with improvements to such barriers to the

implementation of parallelization, and a variety of types of

models have been proposed and their effectiveness noted by

numerous researchers [15], [16], [17]. Today, GAs that im-

plement parallel processing have come to be called parallel

genetic algorithms.

The computational method proposed by the authors [13]

divides the lower level GA operations and assigns them

across multiple processors. Also, the computational method

adopts the single-population master-slave GAs as the up-

per level GA. By assigning the calculation of individual

fitness values, crossover operator and mutation operator

to multiple processors, calculation times are reduced. We

call the computational method proposed by the authors the

computational method using parallel GA (PGA). However,

while the computational method using parallel GA suc-

ceeds in obtaining good approximate solutions and reduc-

ing the amount of computational time, there is still likely

much more room for improvement. In this study, there-

fore, we aim for further improvements of the precision of

approximate solutions and further reductions in computa-

tional time, and consider parallelization of the upper level

GA and the lower level GA implemented by the computa-

tional method using parallel GA.

The multiple-population genetic algorithms performs paral-

lel processing by dividing the population and assigning the

partial populations (sub-populations) to multiple proces-

sors. If we adopt this model as our computational method,
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it is possible to use the computational method using GA

proposed by authors [12] without a lot of modifications.

In that case, the multiple-population genetic algorithm is

adopted as the upper level GA. The upper level GA opera-

tions proposed by authors are applied for partial population

assigned to each processor. Additionally, migration oper-

ator is performed in every migration interval. Also, it is

able to divide the lower level GA operations and assign

them across multiple processor in the same way as PGA.

In this paper, we employ a multiple-population genetic al-

gorithms (distributed genetic algorithms) so as to obtain

good approximate Stackelberg solutions and reduce calcu-

lation times. We call the proposed computational method

using distributed GA (DGA).

3.5. Lower Level GA Avoidance Procedures

In this paper we introduce a storage region as shown

in Fig. 2.

Fig. 2. Storage for saving x and y(x).

Here, xi
, i = 1, . . . ,x max indicate those values of x that

were used in the past for handling individuals of the upper

level GA, and yi(xi), i = 1, . . . ,x max indicate the values

of the rational reactions associated with xi obtained by the

lower level GA. xi
counter ∈ {1,2, . . . ,y max}, i = 1, . . . ,x max

indicate the number of times that the lower level GA was

used to find the rational reaction yi(xi) for xi. x max in-

dicates the maximum number of DM1 decisions x saved,

and y max indicates the maximum number of times that

the lower level GA can be repeatedly used to find the ra-

tional reaction yi(xi) for xi. z1(x
i
,yi(xi)) and z2(x

i
,yi(xi))

are stored xi
,yi(xi) values used in place of DM1 and DM2

objective functions. By using the following algorithm, the

number of applications of the lower level GA is reduced,

and unnecessary calculation times eliminated.

Storage of the rational reaction y(x) and lower

level GA avoidance procedures

Step 1: If there exists in xi an upper level GA individ-

ual x̄, proceed to Step 2. If one does not exist,

then check if the number of xi has reached x max,

and if so continue on to Step 3. If not, proceed to

Step 4.

Step 2: If xi
counter has reached y max, then the saved yi(xi)

is returned to the upper level GA as the rational re-

action and the algorithm terminates. If not reached,

proceed to Step 4.

Step 3: Select the least of the values z1(x
i
,yi(xi)) from

the saved xi, and take that xi value as xk. After

applying the lower level GA and thus obtaining

the rational reaction y(x̄) for x̄, if z1(x
k
,yk(xk))≤

z1(x̄,y(x̄)), save x̄, y(x̄), z1(x̄,y(x̄)), z2(x̄,y(x̄))
in the storage region xk, and terminate the algo-

rithm.

Step 4: After obtaining the rational reaction y(x̄) for x̄

by applying the lower level GA, save x̄, y(x̄),
z1(x̄,y(x̄)), z2(x̄,y(x̄)), and terminate the algo-

rithm.

Implementation of the algorithm described above improved

upon previous methods.

3.6. The Algorithm for the Improved Computational

Method

The algorithm used in the computational method after im-

provement can be described as follows, Np denotes the num-

ber of processors.

Step 1: For each processor q,q = 1, . . . ,Np, apply the up-

per level GA operations on Step1 through Step 7.

Taking the generation of the upper level GA as

tuq := 0, Nu initial individuals are randomly

generated.

Step 2: For each individual x in the upper level GA,

determine whether or not to apply the lower

level GA, and find the number of lower level GA

to apply, Nul . For those individuals Nul , apply

the lower level GA operations in Step 2-1 through

Step 2-3, and obtain the rational reaction y(x). For

those Nu−Nul individuals to which the lower level

GA will not be applied, take the saved y(x) as the

rational reaction, and proceed to Step 4.

Step 2-1: Set tl := 0. Randomly generate Nl lower

level GA individuals y, and take these as

the initial population of the lower level

GA . Proceed to Step 2-2.

Step 2-2: By using x given as the upper level GA

individual and y generated by the lower

level GA, the DM2 objective function

value is calculated. After applying lin-

ear scaling to the value, the repro-

duction operator is applied. Proceed to

Step 2-3.

Step 2-3: If tl has exceeded the previously defined

a maximum number of generation Ml ,

take the individual with the best fitness

value as the optimal individual y(x), and

proceed to Step 3. Otherwise, apply

crossover operator and mutation opera-

tor to each lower level GA individual,

let tl = tl + 1, and proceed to Step 2-2.
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Step 3: By using the lower level rational reaction y(x) ob-

tained by operation of the lower level GA and the

individual x of the upper level GA, calculate the

values for the DM1 and DM2 objective functions.

Perform the procedures required to save x and its

rational reactions y(x) to the storage region, and

proceed to Step 4.

Step 4: Calculate the DM1 objective function for each up-

per level GA individual x, and after performing

linear scaling, apply the clustering method to mea-

sure the level of convergence of the individuals.

Depending upon the degree of convergence, calcu-

late the fitness value of each individual. Proceed

to Step 5.

Step 5: If tuq has exceeded the previously set a maximum

number of generation Mu, then terminate the algo-

rithm. In that case, the individual obtained up to

that generation with the best fitness value is taken

as the optimal individual (x,y). Otherwise, pro-

ceed to Step 6.

Step 6: Reproduction operator is performed using the fit-

ness values of each individual of the upper level

GA. Apply crossover operator and mutation opera-

tor to each upper level GA individual, and proceed

to Step 7.

Step 7: If tuq mod mi (migration interval) = 0, after

performing synchronization between the proces-

sors, apply migration. Return to Step 2 with

tuq := tuq + 1.

4. Numerical Experiments

Numerical experiments are carried out in order to demon-

strate the feasibility and the effectiveness of DGA. We apply

DGA, PGA, and NGA to twelve types of two-level 0-1 pro-

gramming problems as shown in Table 1. Each problem

has five constraints.

Table 1

Problems used in the numerical experiments

Problem
DM1 DM2 Constraint

variables variables strength

I (50%)

A 15 15 II (70%)

III (90%)

I (50%)

B 20 20 II (70%)

III (90%)

I (50%)

C 25 25 II (70%)

III (90%)

I (50%)

D 30 30 II (70%)

III (90%)

In this case, the elements A, B, c1, c2, d1, and d2 of the

two-level 0-1 programming problem are selected at random

from the closed interval [10,99], and the bi element of b is

set according to the equation

bi = ri

(

n1

∑
j=1

ai j +
n2

∑
k=1

bik

)

, i = 1, . . . ,m. (3)

Furthermore, ai j represents the i j element of matrix A, and

bik represents the ik element of matrix B. Here, ri repre-

sents the strength of the constraint. In the strong constraint

problem (I), a random number is determined at random

from the closed interval [0.45,0.55], in the middle con-

straint problem (II), a random number is selected at ran-

dom from the closed interval [0.65,0.75], and in the weak

constraint problem (III), a random number is determined at

random from the closed interval [0.85,0.95], respectively.

The decimal portion of the bi value is rounded off, and the

result is stored as an integer value.

Next, the GA parameters are set for NGA, PGA, and DGA

as follows. First, there are parameters that are used in com-

mon by all three methods, namely the population sizes of

the upper level GA and the lower level GA, the crossover

rate, the mutation rate, and the maximum number of gen-

eration, and those values are set as 120 for the population

size, 0.9 for the crossover rate, 0.02 for the mutation rate,

and 300 for the maximum number of generation. Next, for

PGA and DGA, α is set to 0.25. The initial number of

clusters, k, is set to 5, and dmax and dmin, used to measure

the distance between individuals, are set to 2.5 and 1.0,

respectively. In addition to these parameters, x max and

y max are set to 100 and 5, respectively. The number of

processors is set to 3. Finally, for DGA, we apply the ran-

dom ring model to the communication topology and adopt

Best-Hole model as the selection of emigrants and immi-

grants. The number of migration interval mi is set to 15.

The migration rate is set to 2.5%.

Fig. 3. Comparison of calculation times (the strong constraint

problem (I)).
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Table 2

Comparison of solution precisions

Problem
Constraint DGA PGA
strength best worst average variance best worst average variance

I 1078 1078 1078.0 0.00 1078 1078 1078.0 0.00

A II 1377 1377 1377.0 0.00 1377 1377 1377.0 0.00

III 1727 1727 1727.0 0.00 1727 1727 1727.0 0.00

I 1342 1342 1342.0 0.00 1342 1342 1342.0 0.00

B II 1764 1764 1764.0 0.00 1764 1764 1764.0 0.00

III 2157 2157 2157.0 0.00 2157 2157 2157.0 0.00

I 1713 1713 1713.0 0.00 1713 1713 1713.0 0.00

C II 2221 2207 2214.6 43.84 2221 2207 2215.7 20.81

III 2680 2680 2680.0 0.00 2680 2680 2680.0 0.00

I 1864 1857 1859.8 11.76 1864 1851 1856.8 12.36

D II 2480 2444 2469.6 253.44 2480 2439 2449.7 233.01

III 2930 2930 2930.0 0.00 2930 2930 2930.0 0.00

Problem
Constraint NGA

Enumeration
strength best worst average variance

I 1078 1068 1077.0 9.00 1078

A II 1377 1377 1377.0 0.00 1377

III 1727 1727 1727.0 0.00 1727

I 1342 1328 1340.4 17.24 -

B II 1764 1754 1763.0 9.00 -

III 2157 2157 2157.0 0.00 -

I 1713 1713 1713.0 0.00 -

C II 2221 2207 2210.7 23.81 -

III 2680 2672 2678.5 9.05 -

I 1864 1849 1856.9 11.29 -

D II 2480 2444 2470.0 80.80 -

III 2930 2915 2927.0 20.00 -

Fig. 4. Comparison of calculation times (the middle constraint

problem (II)).

Next we will describe the experimental environment. The

experiment is run on a personal computer with a 2.80 GHz

CPU and running Windows XP. The compiler used is Mi-

crosoft Visual C++ 6.0.

Fig. 5. Comparison of calculation times (the weak constraint

problem (III)).

For each problem, NGA, PGA, and DGA are run ten times

each. The results are given in Table 2 through Table 5.

In Table 2, for all trials of Problem A, DGA, PGA, and

NGA derive precise Stackelberg solutions. But, for the re-
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Table 3

Comparison of calculation times

Problem
Constraint DGA PGA
strength best worst average variance best worst average variance

I 220.78 351.25 269.82 1138.83 213.64 434.43 319.70 3611.94

A II 247.30 320.80 275.36 482.07 108.05 166.72 128.41 316.94

III 215.46 281.27 253.94 427.14 62.20 99.46 82.38 191.60

I 394.09 801.84 599.33 12700.54 599.11 856.95 770.43 4550.59

B II 464.08 772.94 610.84 7149.91 419.83 569.50 504.90 2619.66

III 345.83 633.73 473.91 5558.42 248.95 360.14 293.30 1186.14

I 975.14 1326.10 1149.18 10536.46 1728.47 1913.19 1824.04 4479.17

C II 1092.68 1569.18 1337.10 25015.18 1067.88 1199.30 1116.03 1888.83

III 772.44 1191.86 965.45 16951.74 537.94 665.39 605.52 1484.93

I 1640.06 2426.27 2000.36 53181.01 3347.20 3547.55 3428.30 3115.52

D II 1568.27 2515.28 1980.26 81371.51 1753.85 1781.79 1767.90 97.18

III 1012.63 2268.36 1619.37 89178.03 1073.29 1169.15 1125.58 848.64

Problem
Constraint NGA

Enumeration
strength best worst average variance

I 8379.75 8613.52 8414.59 4578.06 566.73

A II 8550.34 8668.06 8618.90 842.89 652.38

III 8708.25 8714.92 8711.78 3.91 665.81

I 10882.38 11006.64 10954.14 1946.30 –

B II 11296.80 11467.94 11360.96 2888.93 –

III 11447.75 11907.14 11520.65 17290.82 –

I 13467.95 13651.13 13573.35 1886.21 –

C II 14022.60 14067.24 14032.10 147.58 –

III 14060.64 14090.92 14081.75 80.04 –

I 17532.97 17794.47 17646.13 4659.97 –

D II 18208.95 18263.34 18250.02 235.16 –

III 18424.03 18541.39 18461.96 1912.68 –

Table 4

Lower level GA avoidance counts

Problem Constraint DGA PGA

strength best worst average variance best worst average variance

I 35558 34898 35283.7 46901.01 32008 27418 29742.4 1589311.44

A II 35539 35093 35291.8 24252.76 31094 26980 29362.6 1272588.24

III 35634 35133 35371.4 24639.24 32006 29261 30431.2 948838.16

I 34983 33060 33995.6 265319.84 21852 14956 17355.0 3164457.60

B II 34757 32693 33959.8 317217.36 20845 14153 17304.8 4949162.76

III 35274 34007 34667.5 121787.45 23258 17347 20721.5 3514280.45

I 32740 30118 31504.7 518636.01 8626 5577 6963.4 1213648.44

C II 32705 30017 31094.1 677375.69 5164 1599 3707.9 1823801.69

III 33408 31591 32853.0 390069.20 16092 10170 13038.9 3552493.09

I 30696 26108 27780.8 1576362.56 1205 83 490.9 110786.89

D II 30819 26494 28875.6 2235743.84 847 114 292.5 46420.85

III 32731 27108 30240.6 1688052.64 5939 3469 4376.3 514510.01

sults of Problem A-I, NGA is not possible to obtain pre-

cise Stackelberg solutions in some trials. Performance in

deriving the best solutions to Problem B is equal for all

three methods, but comparing the worst values and the av-

erage values shows that DGA and PGA present the best

performance. Observe that the best values and the worst

values obtained by DGA for Problem C and Problem D are

equal or superior to the corresponding values obtained by

NGA. Also, for Problem C and Problem D without Prob-

lem D-II, comparing the average values shows that DGA is

superior to NGA. Finally, for Problem C and Problem D,

DGA is superior or approximately equivalent to PGA in all

results. When comparing the three methods with regards

to the solution precision obtained, DGA is superior.
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Table 5

Comparison of generations in which the best solution was found

Problem
Constraint DGA PGA

strength best worst average variance best worst average variance

I 5 147 37.8 2210.96 3 42 13.9 130.09

A II 6 20 11.7 16.81 2 13 9.0 8.80

III 5 20 11.0 20.80 3 16 9.3 18.81

I 5 158 54.4 1845.04 13 147 62.2 2204.76

B II 9 53 16.7 155.01 7 22 16.2 27.56

III 9 29 16.6 35.24 9 30 18.9 35.69

I 15 71 23.0 258.60 15 59 38.3 180.01

C II 14 165 61.1 3067.89 50 292 141.1 6644.29

III 13 247 75.6 6204.84 26 53 40.8 75.76

I 12 256 68.4 7015.44 62 291 157.3 5343.41

D II 23 299 117.7 9811.21 36 249 159.9 4262.09

III 19 70 39.6 275.04 30 239 74.9 3441.69

Problem
Constraint NGA

Enumeration
strength best worst average variance

I 5 208 48.0 6130.80 –

A II 4 16 8.4 10.64 –

III 3 126 22.4 1205.84 –

I 13 133 45.7 1728.41 –

B II 9 44 16.3 91.61 –

III 9 63 19.5 223.25 –

I 11 35 20.5 34.85 –

C II 16 66 28.2 352.76 –

III 13 26 18.8 17.36 –

I 19 108 34.7 666.61 –

D II 14 103 51.1 721.69 –

III 23 284 64.1 5833.29 –

Fig. 6. Comparison of average avoidance counts (the strong

constraint problem (I)).

Fig. 7. Comparison of average avoidance counts (the middle

constraint problem (II)).
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Examining the calculation time results displayed in Table 3,

for all trials of all problems, DGA and PGA are superior

to NGA. Also, the calculation times of DGA are less than

15% of the calculation times of NGA.

Figure 3 shows the average calculation times for each size

of the strong constraint problems (I). We can see that as

compared to PGA, DGA is superior.

The average calculation times for each size of the middle

constraint problems (II) are illustrated in Fig. 4. When

comparing DGA and PGA, DGA is approximately equiva-

lent or slightly inferior.

The average calculation times for each size of the weak

constraint problems (III) are shown in Fig. 5. From

Fig. 5, DGA is approximately equivalent or slightly inferior

to PGA.

The results of the avoidance count for the lower level GA

are shown in Table 4. From the results listed in this table,

we see that with both DGA and PGA, as the scale of the

problem increases the number of lower level GA avoidances

is reduced.

Fig. 8. Comparison of average avoidance counts (the weak con-

straint problem (III)).

The average avoidance counts for each size of the strong

constraint problems (I), the middle constraint problems (II),

and the weak constraint problems (III) are shown in

Figs. 6–8. Examining the results displayed in these fig-

ures, we see that the avoidance counts of DGA gradually

decrease as the size of the problem increases. On the other

hand, the avoidance counts of PGA rapidly decrease.

Finally, the results of the comparison of generations in

which the best solution was found are illustrated in Table 5.

The results listed in Table 5 show that with both DGA and

PGA, the generation deriving the best result is even later

than with NGA, and so it is likely that by introducing clus-

ter analysis methods the diversity of individuals within the

population of the upper level GA would be maintained,

and rapid population convergence avoided.

From the above results, compared to the other two com-

putational methods, DGA is the superior computational

method, both from a standpoint of solution precision and

required calculation time.

5. Conclusion

This paper has focused on a two-level 0-1 programming

problem in which there is not coordination between the

decision maker at the upper level and the decision maker

at the lower level. The authors have proposed a modi-

fied computational method that solves problems related to

computational methods for obtaining the Stackelberg solu-

tion. Specifically, in order to improve the computational

accuracy of approximate Stakelberg solutions and shorten

the computational time of a computational method imple-

menting GA proposed by the authors, a distributed genetic

algorithm has been introduced with respect to the upper

level GA, which handles decision variables for the up-

per level DM. Also, parallelization of the lower level GA

has been performed along with parallelization of the upper

level GA. The proposed algorithm has been improved in or-

der to eliminate unnecessary computation during operation

of the lower level GA, which handles decision variables

for the lower level DM. In order to verify the effectiveness

of the proposed method, numerical experiments have been

carried out. From the results, we have shown that the pro-

posed method is the superior to the other two computational

methods, both from a standpoint of solution precision and

required calculation time.
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