PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation of Dam-Break Flow by a Corrected Smoothed Particle Hydrodynamics Method

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with numerical modelling of water flow which is generated by the break of a dam. The problem is solved by applying a smoothed particle hydrodynamics (SPH) method in which standard smoothing kernel functions are corrected in such a way that so-called linear reproducing conditions for kernel approximations and their gradients are satisfied. The proposed SPH model has been used to simulate a two-dimensional problem of the collapse of a water column inside a rectangular tank. The simulations illustrate the formation and subsequent propagation of a wave over the horizontal plane. It is shown that the model predictions of the changes of the advancing wave-front position, and of the changes of the free surface elevation of water, compare well with experimental data. Also, the results obtained with the corrected SPH method are compared with those given by the standard SPH method with no kernel correction. In addition, an impact of the surging wave against a vertical rigid wall is illustrated.
Twórcy
  • Institute of Hydro-Engineering, Polish Academy of Sciences, ul. Kościerska 7, 80-328 Gdańsk, Poland, rstar@ibwpan.gda.pl
Bibliografia
  • 1. Antoci C., Gallati M. and Sibilla S. (2007) Numerical simulation of fluid–structure interaction by SPH, Comput. Struct., 85 (11–14), 879–890.
  • 2. Ataie-Ashtiani B., Shobeyri G. and Farhadi L. (2008) Modified incompressible SPH method for simulating free surface problems, Fluid Dyn. Res., 40 (9), 637–661.
  • 3. Batchelor G. K. (1967) An Introduction to Fluid Mechanics, Cambridge University Press, London.
  • 4. Belytschko T., Krongauz Y., Dolbow J. and Gerlach C. (1998) On the completness of meshfree particle methods, Int. J. Numer. Meth. Eng., 43 (5), 785–819.
  • 5. Bonet J. and Kulasegaram S. (2000) Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations, Int. J. Numer. Meth. Eng., 47 (6), 1189–1214.
  • 6. Cleary P. W. and Monaghan J. J. (1999) Conduction modelling using smoothed particle hydrodynamics, J. Comput. Phys. 148 (1), 227–264.
  • 7. Colagrossi A. and Landrini M. (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics, J. Comput. Phys., 191 (2), 448–475.
  • 8. Cummins S. J. and Rudman M. (1999) An SPH projection method, J. Comput. Phys., 152 (2), 584–607.
  • 9. Dalrymple R. A. and Rogers B. D. (2006) Numerical modeling of water waves with the SPH method, Coastal Eng., 53 (2–3), 141–147.
  • 10. Dilts G. A. (1999) Moving-least-squares-particle hydrodynamics – I. Consistency and stability, Int. J. Numer. Meth. Eng., 44 (8), 1115–1155.
  • 11. Gingold R. A. and Monaghan J. J. (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181, 375–389.
  • 12. Gómez-Gesteira M., Cerqueiro D., Crespo C. and Dalrymple R. A. (2005) Green water overtopping analyzed with a SPH method, Ocean Eng., 32 (2), 223–238.
  • 13. Gutfraind R. and Savage S. B. (1997) Marginal ice zone rheology: Comparison of results from continuum-plastic models and discrete-particle simulations, J. Geophys. Res., 102 (C6), 12,647–12,661.
  • 14. Johnson G. R., Stryk R. A. and Beissel S. R. (1996) SPH for high velocity impact computations, Comput. Meth. Appl. Mech. Eng., 139 (1–4), 347–373.
  • 15. Li S. and Liu W. K. (2004) Meshfree Particle Methods, Springer, Berlin.
  • 16. Liu G. R. and Liu M. B. (2003) Smoothed Particle Hydrodynamics: A Meshfree Particle Method, World Scientific, Singapore.
  • 17. Liu M. B., Liu G. R. and Lam K. Y. (2003a) Constructing smoothing functions in smoothed particle hydrodynamics with applications, J. Comput. Appl. Math., 155 (2), 262–284.
  • 18. Liu M. B., Liu G. R., Lam K. Y. and Zong Z. (2003b) Smoothed particle hydrodynamics for numerical simulation of underwater explosion, Comput. Mech., 30 (2), 106–118.
  • 19. Lo E. Y. M. and Shao S. (2002) Simulation of near-shore solitary wave mechanics by an incompressible SPH method, Appl. Ocean Res., 24 (5), 275–286.
  • 20. Lucy L. B. (1977) A numerical approach to the testing of the fission hypothesis, Astron. J., 82 (12), 1013–1024.
  • 21. Martin J. C. and Moyce W. J. (1952) An experimental study of the collapse of liquid columns on a rigid horizontal plane, Phil. Trans. R. Soc. Lond., A 244, 312–324.
  • 22. Monaghan J. J. (1992) Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys., 30, 543–574.
  • 23. Monaghan J. J. (1996) Gravity currents and solitary waves, Physica D, 98 (2-4), 523–533.
  • 24. Morris J. P., Zhu Y. and Fox J. P. (1999) Parallel simulations of pore-scale flow through porous media, Comput. Geotech., 25 (4), 227–246.
  • 25. Randles P. W. and Libersky L. D. (1996) Smoothed Particle Hydrodynamics: Some recent improvements and applications, Comput. Meth. Appl. Mech. Eng., 139 (1–4), 375–408.
  • 26. Shen H. T., Su J. and Liu L. (2000) SPH simulation of river ice dynamics, J. Comput. Phys., 165 (2), 752–770.
  • 27. Szydłowski M. and Zima P. (2006) Two-dimensional vertical Reynolds-averaged Navier-Stokes equations versus one-dimensional Saint-Venant model for rapidly varied open channel water flow modelling, Arch. Hydro-Eng. Environ. Mech., 53 (4), 295–309.
  • 28. Whitham G. B. (1999) Linear and Nonlinear Waves, John Wiley & Sons, New York.
  • 29. Zwart P. J., Raithby G. D. and Raw M. J. (1999) The integrated space-time finite volume method and its application to moving boundary problems, J. Comput. Phys., 154 (2), 497–519.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT8-0017-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.