PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Grain Crushing on Shear Localization in Granular Bodies within Micro-Polar Hypoplasticity

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with the effect of grain crushing on shear localization in granular materials in an infinite long narrow granular strip under constant vertical pressure. The calculations were carried out with an enhanced micro-polar hypoplastic constitutive model which is able to describe the salient properties of crushable granular bodies including shear localization. The change of the mean grain diameter with varying pressure was taken into account with the help of formulae from breakage mechanics. The effect of pressure and initial void ratio on shear localization was studied.
Twórcy
autor
  • Faculty of Civil and Environmental Engineering Gdańsk University of Technology, 80-233 Gdańsk, ul. Narutowicza 11/12, Poland, tejchmk@pg.gda.pl
Bibliografia
  • 1. Arslan H., Baykal G., Sture S. (2009) Analysis of the influence of crushing on the behaviour of granular materials under shear, Granular Matter, 11, 87–97.
  • 2. Bauer E. (1996) Calibration of a comprehensive hypoplastic model for granular materials, Soils and Foundations, 36 (1), 13–26.
  • 3. Cheng Y. P., Nakata Y., Bolton M. D. (2003) Discrete element simulation of crushable soil, Geotechnique, 53 (7), 633–641.
  • 4. Coop M. R., Sorensen K. K., Boda Freitas T., Georgoutsos G. (2004) Particle breakage during shearing of a carbonate sand, Geotechnique, 54 (3), 157–163.
  • 5. Einav I. (2007a) Breakage mechanics, Part I Theory, J. Mech. Phys. Solids, 55 (6), 1274–1297.
  • 6. Einav I. (2007b) Breakage mechanics, Part II Modeling granular materials, J. Mech. Phys. Solids, 55 (6), 1298–1320.
  • 7. Einav I. (2007c) Soil mechanics: breaking ground, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365, 2985–3002.
  • 8. Einav I., Valdes J. R. (2008) On comminution and yield in brittle granular mixtures, J. Mech. Phys. Solids, 55 (6), 2136–2148.
  • 9. Gudehus G. (1996) A comprehensive constitutive equation for granular materials, Soils and Foundations, 36 (1), 1–12.
  • 10. Hardin B. O. (1985) Crushing of soil particles, J. Geotech. Eng. ASCE, 111 (10), 1177–1192.
  • 11. Herle I. and Gudehus G. (1999) Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies, Mechanics of Cohesive-Frictional Materials, 4 (5), 461–486.
  • 12. Indraratna B., Salim W. (2002) Modelling of particle breakage of coarse aggregates incorporating strength and dilatancy, Geotechnical Engineering, 155 (4), 243–252.
  • 13. Löffelmann F. (1989) Theoretische und experimentelle Untersuchungen zur Schüttgut-Wand--Wechselwirkung und zum Mischen und Entmischen von Granulaten, Publication Series of the Institut f¨ur Mechanische Verfahrenstechnik, Universit¨at Karlsruhe.
  • 14. Marketos G., Bolton M. D. (2007) Quantifying the extent of crushing in granular materials: a probability-based predictive method, J. Mech. Phys. Solids, 55, 2141–2156.
  • 15. McDowell G. R., Bolton M. D., Robertson D. (1996) The fractal crushing of granular materials, J. Mech. Phys. Solids, 44 (12), 2079–2102.
  • 16. McDowell G. R., Bolton M. D. (1998) On the micromechanics of crushable aggregates, Geotechnique, 48 (5), 667–679.
  • 17. Miura N., O’Hara S. (1979) Particle crushing of a decomposed granite soil under shear stresses, Soils and Foundation, 19 (3), 1–14.
  • 18. Nakata Y., Hyodo M., Hyde A. F. L., Kato Y., Murata K. (2001) Microscopic particle crushing of sand subjected to high pressure one-dimensional compression, Soil and Foundations, 41 (1), 69–82.
  • 19. Oda M. (1993) Micro-fabric and couple stress in shear bands of granular materials, In: Powders and Grains (ed.: C. Thornton), Rotterdam, Balkema, 161–167.
  • 20. Pasternak E., Mühlhaus H. B. (2001) Cosserat continuum modelling of granulate materials. In: Computational Mechanics – New Frontiers for New Millennium (eds.: S. Valliappan S. and N. Khalili), Elsevier Science, 1189–1194.
  • 21. Schäfer H. (1962) Versuch einer Elastizit¨atstheorie des zweidimensionalen ebenen Cosserat--Kontinuums, Miszellaneen der Angewandten Mechanik, Festschrift Tolmien, W., Berlin, Akademie-Verlag.
  • 22. Tejchman J. (1989) Scherzonenbildung und Verspannungseffekte in Granulaten unter Berücksichtigung von Korndrehungen, Publication Series of the Institute of Soil and Rock Mechanics, University Karlsruhe, 117, 1–236.
  • 23. Tejchman J., Wu W. (1995) Experimental and numerical study of sand-steel interfaces, Int. Journal of Numerical and Anal. Methods in Geomechanics, 19 (8), 513–537.
  • 24. Tejchman J., Bauer E. (1996) Numerical simulation of shear band formation with a polar hypoplastic model, Computers and Geotechnics, 19 (3), 221–244.
  • 25. Tejchman J., Gudehus G. (2001) Shearing of a narrow granular strip with polar quantities, Int. J. Num. and Anal. Methods in Geomechanics, 25, 1–28.
  • 26. Tejchman J. (2004) Influence of a characteristic length on shear zone formation in hypoplasticity with different enhancements, Computers and Geotechnics, 31 (8), 595–611.
  • 27. Tejchman J., Wu W. (2007) Modeling of textural anisotropy in granular materials with stochastic micro-polar hypoplasticity, Int. Journal of Non-linear Mechanics, 42, 882–894.
  • 28. Tejchman J., Górski J. (2008) Computations of size effects in granular bodies within micro-polar hypoplasticity during plane strain compression, Int. Journal for Solids and Structures, 45 (6), 1546–1569.
  • 29. Tejchman J., Wu W. (2009) FE-investigations of non-coaxiality and stress-dilatancy rule in dilatant granular bodies within micro-polar hypoplasticity, Int. Journal for Numerical and Analytical Methods in Geomechanics, 33 (1), 117–142.
  • 30. Turcotte D. I. (1986) Fractals and Fragmentation, J. Geophys. Res., 91, 1921–1926.
  • 31. Uesugi M. (1987) Friction between dry sand and construction, PhD Thesis, Tokyo Institute of Technology.
  • 32. Wu W., Niemunis A. (1996) Failure criterion, flow rule and dissipation function derived from hypoplasticity, Mech. Cohes.-Frict. Mater., 1, 145–163.
  • 33. Vallejo L. E., Lobo-Guerrero S. (2009) Fractal fragmentation of granular materials under compression Powders and Grains, AIP, 847–851.
  • 34. Vardoulakis I. (1980) Shear band inclination and shear modulus in biaxial tests, Int. J. Num. Anal. Meth. Geomech., 4, 103–119.
  • 35. Yamamuro J. A., Lade P. V. (1998) Steady-state concepts and static liquefaction of silty sands, J. Geotech. Geoenviron. Eng. ASCE, 124, 868–877.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT8-0017-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.