PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Perspective for Using the Optical Frequency Standards in Realization of the Second

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The second is currently defined by the microwave transition in cesium atoms. Optical clocks offer the prospects of stabilities and reproducibilities that exceed those of cesium. This paper reviews the progress in frequency standards based on optical transitions, recommended by International Committee for Weights and Measures, as a secondary representation of the second. The operation of these standards is briefly described and factors affecting stability and accuracy of these and some new optical clocks are discussed.
Rocznik
Tom
Strony
111--115
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • Institute of Radioelectronics, Warsaw University of Technology, Nowowiejska st 15/19, 00-665 Warsaw, Poland, K.Radecki@ire.pw.edu.pl
Bibliografia
  • [1] E. F. Arias and G. Petit, “Estimation of the duration of the scale unit of TAI with primary frequency standards”, in Proc. Freq. Contr. Symp., Vancouver, Canada, 2005, pp. 244–246.
  • [2] E. F. Arias, “The metrology of time”, Phil. Trans. R. Soc. A, vol. 363, no. 1834, pp. 2289–2305, 2005.
  • [3] R. Wynands and S. Weyers, “Atomic fountain clocks”, Metrologia, vol. 42, no. 3, pp. S64–S79, 2005.
  • [4] T. Udem and F. Riehle, “Frequency combs applications and optical frequency standards”, Riv. Nuovo Cim., vol. 30, no. 12, pp. 564–602, 2007.
  • [5] “Recommendation CCTF 2 concerning secondary representation of the second”, in Rep. 17th Meet. CCTF, Sevres, France, 2006, p. 40.
  • [6] F. Riehle, “On secondary representation of the second”, in XXIXth URSI Gener. Assem. Conf., Chicago, USA, 2008, p. 21 (abstracts A0 1.2).
  • [7] S. G. Porsev et al., “Determination of Sr properties for a high accuracy optical clock”, Phys. Rev. A, vol. 78, no. 3, pp. 032508-1– 032508-9, 2008.
  • [8] L. Holberg et al., “Optical frequency standards and measurements”, IEEE J. Quant. Electron., vol. 37, no. 12, pp. 1502–1513, 2001.
  • [9] U. Tanaka et al., “Optical frequency standard based on 199Hg+ ion”, IEEE Trans. Instrum., vol. 52, no. 2, pp. 245–249, 2003.
  • [10] W. H. Oskay et al., “Single-atom optical clock with high accuracy”, Phys. Rev. Lett., vol. 97, no. 2, pp. 020801-1–020801-4, 2006.
  • [11] T. Rosenband et al., “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place”, Science, vol. 319, no. 5871, pp. 1808–1812, 2008.
  • [12] J. E. Stalnaker et al., “Optical to microwave frequency comparison with fractional uncertainty of 10−15”, Appl. Phys. B, vol. 89, no. 2–3, pp. 167–176, 2007.
  • [13] C. Tamm et al., “171Yb+ single ion optical frequency standard at 688 THz”, IEEE Trans. Instrum., vol. 56, no. 2, pp. 601–604, 2008.
  • [14] G. P. Barwood et al., “Observation of a sub-10-Hz linewidth 88Sr+ 2S1/2 −2 D5/2 clock transition at 674 nm”, IEEE Trans. Instrum., vol. 56, no. 2, pp. 226–229, 2007.
  • [15] H. S. Margolis et al., “Hertz-level measurement of the optical clock frequency in a single 88Sr+ ion”, Science, vol. 306, no. 5700, pp. 1355–1358, 2004.
  • [16] T. Rosenband et al., “Observation of the 1S0 !3 P0 clock transition in 27Al+”, Phys. Rev. Lett., vol. 98, no. 22, pp. 220801-1–220801-4, 2007.
  • [17] M. Boyd, “High precison spectroscopy of strontium in a optical lattice: towards a new standard for frequency and time”. Ph.D. thesis, University of Colorado, Department of Physics, 2007.
  • [18] G. K. Campbell et al., “The absolute frequency of the 87Sr optical clock transition”, Metrologia, vol. 45, no. 5, pp. 539–548, 2008.
  • [19] A. D. Ludlow et al., “Sr lattice clock at 10−16 fractional uncertainty by remote optical evaluation with a Ca clock”, Science, vol. 319, no. 5871, pp. 1805–1808, 2008.
  • [20] A. D. Ludlow, “The strontium optical lattice clock: optical spectroscopy with sub-Hertz accuracy”. Ph.D. thesis, University of Colorado, Department of Physics, 2008.
  • [21] M. Petersen et al., “Doppler-free spectroscopy of the S0 −3 P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury”, Phys. Rev. Lett., vol. 101, no. 18, pp. 183004-1–183004-4, 2008.
  • [22] G. Wilpers et al., “Absolute frequency measurement of the neutral 40Ca optical frequency standard at 657 nm based on microlelvin atoms”, Metrologia, vol. 44, no. 2, pp. 146–151, 2007.
  • [23] Z. W. Barber et al., “Optical lattice induced light shifts in an Yb atomic clock”, Phys. Rev. Lett., vol. 100, no. 10, pp. 103002-1– 103002-4, 2008.
  • [24] H. Katori et al., “Optical lattice clocks with non-interacting bosons and fermions”, Rev. Laser Eng., vol. 36, no. APLS, pp. 1004–1007, 2008.
  • [25] H. Hachisu et al., “Trapping of neutral mercury atoms and prospects for optical lattice clocks”, Phys. Rev. Lett., vol. 100, no. 5, pp. 053001-1–053001-4, 2008.
  • [26] F. Riehle, “Optical atomic clocks: challenges and possible solutions”, in Worksh. Quant. Phys. Atoms and Phot. IFRAF, Les Houches, France, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT8-0016-0036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.