PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fotonika w systemach teleinformatycznych nowych generacji

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Photonics for new generation of data transmission systems
Języki publikacji
PL
Abstrakty
PL
Omówiono wybrane aspekty związane z rozwojem badań nad przyrządami i zintegrowanymi systemami fotonicznymi, przeznaczonymi w szczególności do współpracy z przezroczystymi sieciami optycznymi nowych generacji, transmisją i przetwarzaniem danych.
EN
The paper presents selected areas of research on devices and integrated photonic systems, in particular those intended for use in new generation transparent optical networks, data transmission and processing.
Rocznik
Tom
Strony
127--141
Opis fizyczny
Bibliogr. 56 poz., rys.
Twórcy
Bibliografia
  • [1] B. Mukherjee, “WDM optical communication networks: progress and challenges”, J. Selec. Areas Commun., vol. 18, pp. 1810–1824, Oct. 2000.
  • [2] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals Molding the Flow of Light. Princeton: Princeton University Press, 1995.
  • [3] J.-M. Lourtioz, H. Bensity, V. Berger, J.-M. Gerard, D. Maystre, and A. Tchelnokov, Photonic Crystals Towards Nanoscale Photonic Devices. Berlin: Springer, 2005.
  • [4] K. Busch, S. Lolkes, R. B. Wehrspohn, and H. Foll, Photonic Crystals Advances in Design, Fabrication, and Characterization. Weinheim: Villey-vch, 2004.
  • [5] K. Nozaki et al., “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser”, Opt. Expr., vol. 15, no. 12, p. 7506, 2007.
  • [6] F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibers. London: Imperial College Press, 2005.
  • [7] A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers. Berlin: Springer, 2003.
  • [8] N. Fukaya, D. Ohsaki, and T. Baba, “Two-dimensional photonic crystal waveguides with 60 bends in a thin slab structures”, Jpn. J. Appl. Phys., vol. 39, pp. 2619–2623, 2000.
  • [9] K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli, and F. Capasso, “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser”, Appl. Phys. Lett., vol. 84, pp. 4164–4166, 2004.
  • [10] B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices”, Opt. Expr., vol. 9, pp. 698–713, 2001.
  • [11] K. J. Resch, J. S. Lundeen, and A. M. Steinberg, “Nonlinear optics with less than one photon”, Phys. Rev. Lett., vol. 87, p. 123603, 2001.
  • [12] G. Chen, N. H. Bonadeo, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, and L. J. Sham, “Optically induced entanglement of excitons in a single quantum dot”, Science, vol. 289, pp. 1906–1909, 2000.
  • [13] P. Michler, A. Imamolu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature”, Nature, vol. 406, pp. 968–970, 2000.
  • [14] Ch. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography”, J. Cryptol., vol. 5, pp. 3–28, 1992.
  • [15] D. A. B. Miller, “Optical interconnects to silicon”, IEEE J. Sel. Top. Quant. Electron., vol. 6, no. 6, pp. 1312–1317, Nov./Dec. 2000.
  • [16] J. D. Meindl et al., “Interconnect opportunities for gigascale integration”, IBM J. Res. Develop., vol. 46, no. 2/3, pp. 245–263, March/May 2002.
  • [17] E. M. Mohammed et al., “Optical I/O technology for digital VLSI”, in Proc. SPIE, San Jose, USA, 2004, vol. 5358, pp. 60–70.
  • [18] O. Kibar, D. A. Van Blerkom, C. Fan, and S. C. Esener, “Power minimization and technology comparisons for digital free-space optoelectronic interconnections”, J. Lightw. Technol., vol. 17, no. 4, pp. 546–555, Apr. 1999.
  • [19] A. M. Pappu and A. B. Apsel, “Analysis of intrachip electrical and optical fanout”, Appl. Opt., vol. 44, no. 30, p. 6361, Oct. 2005.
  • [20] M. Salib, L. Liao, R. Jones, M. Morse, A. Liu, D. Samara-Rubio, D. Alduino, and M. Paniccia, “Silicon photonics”, Intel Technol. J., vol. 8, no. 2, p. 1442, 2004.
  • [21] R. C. Johnson, “Intel reveals long-term goals for silicon photonics, sensors”, Electron. Eng. Times, 2002 [Online]. Available: http://www.eetimes.com/semi/news/OEG20020228S0033
  • [22] L. C. Kimerling, “Photons to the rescue: microelectronics becomes microphotonics”, Electrochem. Soc. Interface, vol. 9, no. 2, p. 28, 2000.
  • [23] C. Gunn, “CMOS photonics-SOI learns a new trick”, in Proc. IEEE Silicon on Insulator (SOI) Conf., Honolulu, USA, 2005.
  • [24] R. Soref and J. Lorenzo, “All-silicon active and passive guided-wave components for l = 1.3 and 1.6 μm”, IEEE J. Quant. Electron., vol. QE-22, no. 6, pp. 873–879, June 1986.
  • [25] Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends”, Opt. Expr., vol. 12, no. 8, pp. 1622–1631, Apr. 2004.
  • [26] K. K. Lee, “Transmission and routing of optical signals in onchip waveguides for silicon microphotonics”, Ph.D. dissertation, Dept. Materials Science Eng., Mass. Inst. Technol., Cambridge, USA, 2001.
  • [27] K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model”, Appl. Phys. Lett., vol. 77, no. 11, pp. 1617–1619, Sept. 2000.
  • [28] Q. Xu, V. R. Almeida, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material”, Opt. Lett., vol. 29, no. 14, pp. 1626–1628, July 2004.
  • [29] P. D. Trinh, S. Yegnanarayanan, and B. Jalali, “Guided-wave optical circuits in silicon-on-insulator technology”, in Proc. Tech. Dig. Integr. Phot. Res. Conf., Boston, USA, 1996, vol. 6, pp. 273–277.
  • [30] T. E. Murphy, J. T. Hastings, and H. I. Smith, “Fabrication and characterization of narrow-band Bragg-reflection filters in silicon-on-insulator ridge waveguides”, J. Lightw. Technol., vol. 19, no. 12, pp. 1938–1942, Dec. 2001.
  • [31] D. R. Lim, B. E. Little, K. K. Lee, M. Morse, H. H. Fujimoto, H. A. Haus, and L. C. Kimerling, “Micron-sized channel dropping filters using silicon waveguide devices”, in Proc. SPIE Int. Soc. Opt. Eng., Boston, USA, 1999, vol. 3847, pp. 65–71.
  • [32] J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides”, Nature, vol. 390, no. 6656, pp. 143–145, Nov. 1997.
  • [33] T. Yoshie et al., “High quality two-dimensional photonic crystal slab cavities”, Appl. Phys. Lett., vol. 79, no. 26, pp. 4289–4291, Dec. 2001.
  • [34] A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulation based on a metal-oxide-semiconductor capacitor”, Nature, vol. 427, no. 6975, pp. 615–618, Feb. 2004.
  • [35] L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder”, Opt. Expr., vol. 13, no. 8, pp. 3129–3135, Apr. 2005.
  • [36] Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometer-scale silicon electro-optic modulator”, Nature, no. 435, pp. 325–327, May 2005.
  • [37] C. Barrios and M. Lipson, “Modeling and analysis of high-speed electrooptic modulation in high confinement silicon waveguides using metal-oxide-semiconductor configuration”, J. Appl. Phys., vol. 96, no. 11, pp. 6008–6015, Dec. 2004.
  • [38] S. Ossicini, L. Pavesi, and F. Priolo, Light Emitting Silicon for Microphotonics. Springer Tracts in Modern Physics. Berlin: Springer-Verlag, 2003.
  • [39] L. Pavesi, L. DalNegro, C. Mazzoleni, G. Franz`o, and F. Priolo, “Optical gain in silicon nanocrystals”, Nature, vol. 408, no. 6811, pp. 440–444, Nov. 2000.
  • [40] Silicon Based Microphotonics: From Basics to Applications, O. Bisi, S. U. Campisano, L. Pavesi, and F. Priolo, Eds. Amsterdam: IOS, 1999.
  • [41] M. H. Nayfeh, N. Barry, J. Therrien, O. Akcakir, E. Gratton, and G. Belomoin, “Stimulated blue emission in reconstituted films of ultrasmall silicon nanoparticles”, Appl. Phys. Lett., vol. 78, no. 8, pp. 1131–1133, Feb. 2001.
  • [42] F. G. Grom, P. M. Fauchet, L. Tsybeskov, J. P. McCaffrey, H. J. Labbe, D. J. Lockwood, and B. E. White, “Microcrystalline and nanocrystalline semiconductors – 2000”, in Proc. Mater. Res. Soc. Symp., Boston, USA, 2001, vol. 638, pp. F6.1.1–F6.1.6.
  • [43] F. Iacona, G. Franz`o, and C. Spinella, “Correlation between luminescence and structural properties of Si nanocrystals”, J. Appl. Phys., vol. 87, no. 3, pp. 1295–1303, Feb. 2000.
  • [44] P. M. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R. G. Elliman, N. Smith, M. Samoc, and B. Luther-Davies, “Optical gain in different silicon nanocrystal systems”, Opt. Mater., vol. 27, no. 5, pp. 745–749, Feb. 2005.
  • [45] R. Serna, J. H. Shin, M. Lohmeier, E. Vlieg, A. Polman, and P. F. A. Alkemade, “Incorporation and optical activation of erbium in silicon using molecular beam epitaxy”, J. Appl. Phys., vol. 79, no. 5, pp. 2658–2662, March 1996.
  • [46] P. N. Favennec, H. l’Haridon, D. Moutonnet, M. Salvi, and M. Gauneau, “Optical activation of Er3+ implanted in silicon by oxygen impurities”, Jpn. J. Appl. Phys., vol. 29, no. 4, pp. L524–L526, Apr. 1990.
  • [47] J. Michel, J. L. Benton, R. F. Ferrante, D. C. Jacobson, D. G. Eaglesham, E. A. Fitzgerald, Y.-H. Xie, J. M. Poate, and L. C. Kimerling, “Impurity enhancement of the 1.54-μm Er3+ luminescence in silicon”, J. Appl. Phys., vol. 70, no. 5, pp. 2672–2678, Sept. 1991.
  • [48] F. Priolo, G. Franz`o, S. Coffa, and A. Carnera, “Excitation and nonradiative deexcitation processes of Er3+ in crystalline Si”, Phys. Rev. B, Condens. Matter, vol. 57, no. 8, pp. 4443–4455, Feb. 1998.
  • [49] S. Coffa, G. Franz`o, F. Priolo, A. Polman, and R. Serna, “Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si”, Phys. Rev. B, Condens. Matter, vol. 49, no. 23, pp. 16313–16320, June 1994.
  • [50] T. Gregorkiewicz, D. T. X. Thao, J. M. Langer, H. H. P. T. Bekman, M. S. Bresler, J. Michel, and L. C. Kimerling, “Energy transfer between shallow centers and rare-earth ion cores: Er3+ ion in silicon”, Phys. Rev. B, Condens. Matter, vol. 61, no. 8, pp. 5369–5375, Feb. 2000.
  • [51] P. G. Kik, “Energy transfer in erbium doped optical waveguides based on silicon”, Ph.D. dissertation, Nanophysics Dept., FOM-Inst. Atomic and Molecular Phys., Amsterdam, The Netherlands, 2000.
  • [52] R. Boyd, Nonlinear Optics, 2nd ed. San Diego: Academic, 2003.
  • [53] R. Clap, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides”, Opt. Expr., vol. 11, no. 5, pp. 1731–1739, July 2003.
  • [54] T. K. Liang and H. K. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides”, Appl. Phys. Lett., vol. 84, no. 15, pp. 2745–2747, Apr. 2004.
  • [55] R. L. Espinola, J. I. Dadap, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultrasmall silicon-on-insulator wire waveguides”, Opt. Expr., vol. 12, no. 16, pp. 3713–3718, Aug. 2004.
  • [56] Q. Xu, V. R. Almeida, and M. Lipson, “Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides”, Opt. Expr., vol. 12, no. 19, pp. 4437–4442, Sept. 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT8-0014-0060
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.