PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Variational treatment of a vibrating LiNbO3-based rectangular hybrid structure: the developing of a functional for computing surface-load configurations

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electrically-excited electroelastic extensional vibrations of an arbitrarily cut three-dimensional piezocrystal resonator are analyzed variationally. A set of trigonometric trial functions applicable to a waveguide behavior of the resonator partly covered by metal electrodes is proposed. The dependence of the content of the vibration modes sustained by the resonator on the electrode configuration is found. The frequency spectra taken in 128o-γ-rotated LiNbO3 rectangular plates exhibit a good conformity with the computed resonator eigenfrequencies.
Twórcy
Bibliografia
  • [1] Allik H., Hughes T.J.R., Finite element method for piezoelectric vibration, Int. J. Num. Meth. Eng., 2, 150–157 (1970).
  • [2] Allik H., Webman K.M., Hunt J.T., Vibrational response of sonar transducers using piezoelectric finite elements, J. Acoust. Soc. Amer., 56, 1782–1791 (1974).
  • [3] Berlincourt D.A., Curran D.R., Jaffe H., Piezoelectric and Piezomagnetic Materials and Their Function in Transducers, [In:] Physical Acoustic Mason W.P. [Ed.], vol. 1, part. A, pp. 169–270, Academic Press, New York 1964.
  • [4] Du Xiao-Hong, Wang Qing-Ming, Uchino K., Accurate determination of complex materials coefficients of piezoelectric resonators, IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, 50, 312–320 (2003).
  • [5] Friedrich W., Lerch R., Prestele, Soldner R., Simulations of piezoelectric Lamb wave delay lines using a finite element K. method, IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, 37, 248–254 (1990).
  • [6] Gorb A.M., Nadtochii A.B., Korotchenkov O.A., Motion of microscopic grains in a periodic potential of plate acoustic waves, J. Phys.: Condens. Matt., 15, 7201–7211 (2003).
  • [7] Govorov A.O., Kalameitsev A.V., Rotter M., Wixforth A., Kotthaus J.P., Hoffmann K.-H., Botkin N., Nonlinear Acoustoelectric Transport in a Two-Dimensional Electron System, Phys. Rev. B 62 2659–2668, and references therein (2000).
  • [8] Guo N., Cawley P., Measurement and prediction of the frequency spectrum of piezoelectric disks by modal analysis, J. Acoust. Soc. Amer., 92, 3379–3388 (1992).
  • [9] Hayliger P., Traction-free vibration of layered elastic and piezoelectric rectangular parallelepipeds, J. Acoust. Soc. Amer., 107, 1235–1245 (2000).
  • [10] Heyliger P., Saravanos D.A., Exact free-vibration analysis of laminated plates with embedded piezoelectric layers, J. Acoust. Soc. Amer., 98, 1547–1557 (1995).
  • [11] Hayward G., Gillies D., Block diagram modeling of tall, thin parallelepiped piezoelectric structures, J. Acoust. Soc. Amer., 86, 1643–1653 (1989).
  • [12] Holland R., Resonant properties of piezoelectric ceramic rectangular parallelepipeds, J. Acoust. Soc. Am., 43, 988–997 (1968a).
  • [13] Holland R., Contour extensional resonant properties of rectangular piezoelectric plates, IEEE Trans. Sonics and Ultrasonics, 15, 97–105 (1968b).
  • [14] Holland R., Eer Nisse, Variational evaluation of admittances of multielectroded threedimensional piezoelectric structures, IEEE Trans. Sonics and Ultrasonics, SU-15, 119–132 (1968).
  • [15] Huang C.-H., Ma C.-C., Experimental and numerical investigations of resonant vibration characteristics for piezoceramic plates, J. Acoust. Soc. Amer., 109, 2780–2788 (2001).
  • [16] Ikegami S., Ueda I., Kobayashi S., Frequency spectra of resonant vibration in disk plates of PbTiO3 piezoelectric ceramics, J. Acoust. Soc. Amer., 55, 339–344 (1974).
  • [17] Korn A., Korn T.M., Mathematical Handbook for Scientists and Engineers, McGraw-Hill, New York 1968.
  • [18] Kunkel H.A., Locke S., Pikeroen B., Finite-element analysis of vibrational modes in piezoelectric ceramic disks, IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, 37, 316–328 (1990).
  • [19] Lerch R., Simulation of piezoelectric devices by two- and three-dimensional finite elements, IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, 37, 233–247 (1990).
  • [20] Lin Y.-C., Ma C.-C., Experimental measurement and numerical analysis on resonant characteristics of piezoelectric disks with partial electrode designs, IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, 51, 937–947 (2004).
  • [21] Ma C.-C., Huang C.-H., The investigation of three-dimensional vibration for piezoelectric rectangular parallelepipeds using the AF-ESPI method, IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, 48, 142–153 (2001).
  • [22] Ogi H., Kawasaki Y., Hirao M., Acoustic spectroscopy of lithium niobate: Elastic and piezoelectric coefficients, J. Appl. Phys., 92, 2451–2456 (2002).
  • [23] Peach R.C., A normal mode expansion for piezoelectric plates and certain of its applications, IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, 35, 593–611 (1988).
  • [24] Rektoris K., Variational Methods in Mathematics, Science and Engineering, Dr. Riedel Publ. Comp., Prague 1980.
  • [25] Rocke C., Zimmermann S., Wixforth A., Kotthaus J.P., Böhm G., Weimann G., Acoustically Driven Storage of Light in a Quantum Well, Phys. Rev. Lett., 78, 4099–4102 (1997).
  • [26] Shibayama K., Yamanouchi K., Sato H., Meguro T., Optimum cut for rotated Y-cut LiNbO3 crystal used as the substrate of acoustic-surface-wave filters, In Proc. IEEE, 64, 595–597 (1976).
  • [27] Shuyu L., The three-dimensional equivalent circuit and the natural frequencies of rectangular piezoelectric ceramic resonators, J. Acoust. Soc. Amer., 96, 1620–1626 (1994).
  • [28] Shuyu L., Analysis of the sandwich piezoelectric ultrasonic transducer in coupled vibration, J. Acoust. Soc. Amer., 117, 653–661 (2005).
  • [29] Shuyu L., Fucheng Z., Vibrational modes and frequency spectra in piezoelectric ceramic rectangular resonators, J. Acoust. Soc. Am., 94, 2481–2484 (1993).
  • [30] Smith R.H., Welsh F.S., Temperature dependence of the elastic, piezoelectric and dielectric constants of lithium tantalite and lithium niobate, J. Appl. Phys., 42, 2219–2230 (1971).
  • [31] Tiersten H.F., Hamilton’s principle for linear piezoelectric media, In. Proc. IEEE, 1523, (1967).
  • [32] Yang J., Variational formulation of the equations for small fields superposed on finite biasing fields in an electroelastic body, IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, 51, 1030–1034 (2004).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT8-0014-0045
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.