PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multiple dichotomies in timbre research

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper an overview of aspects, terminology and literature on contemporary research regarding timbre is presented. Timbre is a multidimensional entity, and research traces its multifaceted nature. The paper handles this structural complexity using a domain-task-results paradigm. Several domains of application are examined and various aspects of timbre questioning are outlined, although consideration of aspects in music and its contextual applications are postponed for a following detailed report for reasons of presentation compactness and extent. A self-evident differentiation of research categorization stems from the type of consideration of timbre as a perceptual attribute or as a manifestation of physical (either generative or modified after transmission) phenomena and processes. As more "axes" of differentiation also emerge, this work attempts to highlight issues that rise and propose possible research directions.
Twórcy
autor
Bibliografia
  • [1] –, Mpeg-7 overview, Available from: http://www.chiariglione.org/MPEG/standards/mpeg-7/mpeg-7.htm
  • [2] Ahlstrom C., Hult P., Rask P., Karlsson J., Nylander E., Dahlström U., Ask P., Feature extraction for systolic heart murmur classification, Annals of Biomedical Engineering, 34, 1666–77 (2006).
  • [3] Belin P., Fecteau S., Bédard C., Thinking the voice: neural correlates of voice perception, Trends in Cognitive Sciences, 8, 129–135 (2004).
  • [4] Benko U., Petrovcic J., Juricic D., Tavcar J., Rejec J., Stefanovska A., Fault diagnosis of a vacuum cleaner motor by means of sound analysis, Journal of Sound and Vibration, 276, 781–806 (2004).
  • [5] Bleeck S., Fox P.D., White P.R., O’meara N., Auditory models and nonlinear filterbanks in underwater auralization, The Journal of the Acoustical Society of America, 123, 3344 (2008).
  • [6] Blomgren M., Chen Y., Ng M.l., Gilbert H.R., Acoustic, aerodynamic, physiologic, and perceptual properties of modal and vocal fry registers, The Journal of the Acoustical Society of America, 103, 2649–58 (1998).
  • [7] Bruel & Kjaer, Bp-1589: pulse sound quality software – type 7698. The pulse application for analysing and improving sound quality, Bruel & Kjaer, 2005.
  • [8] Caclin A., Mcadams S., Smith B.K., Winsberg S., Acoustic correlates of timbre space dimensions: a confirmatory study using synthetic tones, The Journal of the Acoustical Society of America, 118, 471–82 (2005).
  • [9] Carlos Toshinori Ishi, Hiroshi Ishiguro, Norihiro Hagita, Evaluation of prosodic and voice quality features on automatic extraction of paralinguistic information, Proceedings of Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on, 2006.
  • [10] Childers D.G., Ahn C., Modeling the glottal volume-velocity waveform for three voice types, The Journal of the Acoustical Society of America, 97, 505–19 (1995).
  • [11] Childers D.G., Lee C.K., Vocal quality factors: analysis, synthesis, and perception, The Journal of the Acoustical Society of America, 90, 2394–410 (1991).
  • [12] Childers D.G., Speech processing and synthesis toolboxes, WILEY, pub-WILEY 1999.
  • [13] Cox T., Sound quality, Available from: http://www.acoustics.salford.ac.uk/res/cox/sound¡quality/
  • [14] D’alessandro C., Voice quality in vocal communication, Tutorial, Presented at: Interspeech, Antwerp, Belgium 2007.
  • [15] D’alessandro C., D’alessandro N., Le Beux S., Doval B., Comparing time-domain and spectral-domain voice source models for gesture controlled vocal instruments, Proceedings of 5th International Conference on Voice Physiology and Biomechanics, Tokyo, Japan 2006.
  • [16] Debbal S.M., Bereksi–Reguig F., Computerized heart sounds analysis, Computers in Biology and Medicine, 38, 263–80 (2008).
  • [17] Dimoulas C., Kalliris G., Papanikolaou G., Petridis V., Kalampakas A., Bowelsound pattern analysis using wavelets and neural networks with application to long-term, unsupervised, gastrointestinal motility monitoring, Expert Systems with Applications, 34, 26–41 (2008).
  • [18] Dubois D., Guastavino C., In search for soundscape indicators: physical descriptions of semantic categories, Proceedings of Internoise 2006, Honolulu, Hawaii, USA 2006.
  • [19] Eadie T.L., Doyle P.C., Classification of dysphonic voice: acoustic and auditoryperceptual measures, Journal of Voice: Official Journal of the Voice Foundation, 19, 1–14 (2005).
  • [20] Ellermeier W., Mader M., Daniel P., Scaling the unpleasantness of sounds according to the btl model: ratio-scale representation and psychoacoustical analysis, Acta Acustica united with Acustica, 90, 101–107 (2004).
  • [21] Fiebrink R., Mcadams S., Looking to a unified theory of timbre to improve timbral similarity systems in music information retrieval, Course material, MUGS695: Timbre as a Form-Bearing Element in Music: Perceptual and Cognitive Issues, 2005.
  • [22] Furui S., Recent advances in speaker recognition, Pattern Recognition Letters, 18, 859–872 (1997).
  • [23] Gerratt B.R., Kreiman J., Measuring vocal quality with speech synthesis, The Journal of the Acoustical Society of America, 110, 2560–6 (2001).
  • [24] Gerratt B.R., Kreiman J., Toward a taxonomy of nonmodal phonation, Journal of Phonetics, 29, 365–381 (2001).
  • [25] Gobl C., Ni Chasaide A., The role of voice quality in communicating emotion, mood and attitude, Speech Communication, 40, 189–212 (2003).
  • [26] Grey J.M., Multidimensional perceptual scaling of musical timbres, The Journal of the Acoustical Society of America, 61, 1270–7 (1977).
  • [27] Guastavino C., Dubois D., From language and concepts to acoustics: how do people cognitively process soundscapes?, Proceedings of Internoise 2006, Honolulu, Hawaii, USA 2006.
  • [28] Gudnason J., Brookes M., Voice source cepstrum coefficients for speaker identification, Proceedings of Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on, 2008.
  • [29] Gupta C.N., Palaniappan R., Swaminathan S., Classification of homomorphic segmented phonocardiogram signals using grow and learn network, Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, 2005.
  • [30] Gygi B., Kidd G.R., Watson C.S., Spectral-temporal factors in the identification of environmental sounds, The Journal of the Acoustical Society of America, 115, 1252–1265 (2004).
  • [31] Gygi B., Kidd G.R., Watson C.S., Similarity and categorization of environmental sounds, Perception & Psychophysics, 69, 839–855 (2007).
  • [32] Hadjitodorov S., Boyanov B., Teston B., Laryngeal pathology detection by means of class-specific neural maps, IEEE Transactions on Information Technology in Biomedicine, 4, 68–73 (2000).
  • [33] Hajda J., The effect of dynamic acoustical features on musical timbre, [in:] Analysis, Synthesis, and Perception of Musical Sounds, Springer, New York 2007.
  • [34] Houtsma A.J.M., Experiments on pitch perception: implications for music and other processes, Archives of Acoustics, 32, 475–490 (2007).
  • [35] Ishi C., Sakakibara K., Ishiguro H., Hagita N., A method for automatic detection of vocal fry, IEEE Transactions on Audio, Speech, and Language Processing, 16, 47–56 (2008).
  • [36] Jekosch U., Assigning meaning to sounds – semiotics in the context of product-sound design, [in:] Communication Acoustics, Springer, Berlin/Heidelberg 2005.
  • [37] Jekosch U., Basic concepts and terms of “quality”, reconsidered in the context of productsound quality, Acta Acustica united with Acustica, 90, 999–1006 (2004).
  • [38] Kahya Y.P., Yeginer M., Bilgic B., Classifying respiratory sounds with different feature sets, Proceedings of IEEE EMBS 28th Annual Conference, New York 2006.
  • [39] Karnell M.P., Melton S.D., Childes J.M., Coleman T.C., Dailey S.A., Hoffman H.T., Reliability of clinician-based (grbas and cape-v) and patient-based (v-rqol and ipvi) documentation of voice disorders, Journal of Voice, 21, 576–590 (2007).
  • [40] Klatt D.H., Klatt L.C., Analysis, synthesis, and perception of voice quality variations among female and male talkers, The Journal of the Acoustical Society of America, 87, 820–857 (1990).
  • [41] Kostek B., Perception-based data processing in acoustics, applications to music information retrieval and psychophysiology, Springer, Berlin/Heidelberg 2005.
  • [42] Kostek B., “Computing with words” concept applied to musical information retrieval, Electronic Notes in Theoretical Computer Science, 82, 141–152 (2003).
  • [43] Kreiman J., Gerratt B.R., Sources of listener disagreement in voice quality assessment, The Journal of the Acoustical Society of America, 108, 1867–76 (2000).
  • [44] Kreiman J., Gerratt B.R., Validity of rating scale measures of voice quality, The Journal of the Acoustical Society of America, 104, 1598–608 (1998).
  • [45] Kreiman J., Gerratt B.R., Berke G.S., The multidimensional nature of pathologic vocal quality, The Journal of the Acoustical Society of America, 96, 1291–302 (1994).
  • [46] Kreiman J., Gerratt B.R., Ito M., When and why listeners disagree in voice quality assessment tasks, The Journal of the Acoustical Society of America, 122, 2354–64 (2007).
  • [47] Kuwabara H., Ohgushi K., Experiments on voice qualities of vowels in males and females and correlation with acoustic features, Language and Speech, 27 (Pt 2), 135–45.
  • [48] Kwon O., Chan K., Hao J., Lee T., Emotion recognition by speech signals, 2003.
  • [49] Lemaitre G., Susini P., Winsberg S., Mcadams S., Letinturier B., The sound quality of car horns: a psychoacoustical study of timbre, Acta Acustica united with Acustica, 93, 457–468 (2007).
  • [50] Lewicki M.S., Efficient coding of natural sounds, Nature Neuroscience, 5, 356–363 (2002).
  • [51] Liatsos C., Hadjileontiadis L., Mavrogiannis C., Patch D., Panas S., Burroughs A., Bowel sounds analysis: a novel noninvasive method for diagnosis of smallvolume ascites, Digestive Diseases and Sciences, 48, 1630–1636 (2003).
  • [52] Martin K.D., Sound-source recognition: a theory and computational model, Ph.D. thesis, Massachusetts Institute of Technology, 1999.
  • [53] Mcadams S., Perspectives on the contribution of timbre to musical structure, Computer Music Journal, 23, 85–102 (1999).
  • [54] Mcadams S., Winsberg S., Donnadieu S., Soete G., Krimphoff J., Perceptual scaling of synthesized musical timbres: common dimensions, specificities, and latent subject classes, Psychological Research, 58, 177–192 (1995).
  • [55] Michaelis D., Fröhlich M., Strube H.W., Selection and combination of acoustic features for the description of pathologic voices, The Journal of the Acoustical Society of America, 103, 1628–39 (1998).
  • [56] Minard A., Susini P., Misdariis N., Lemaitre G., Mcadams S., Parizet E., Twolevel description of environmental sounds: comparison and generalization of 4 timbre studies, The Journal of the Acoustical Society of America, 123, 3253 (2008).
  • [57] Moore B.C.J., An introduction to the psychology of hearing, 3rd edition, Academic Press, London 1989.
  • [58] Muñoz J., Mendoza E., Fresneda M.D., Carballo G., López P., Acoustic and perceptual indicators of normal and pathological voice, Folia Phoniatrica Et Logopaedica: Official Organ of the International Association of Logopedics and Phoniatrics (IALP), 55, 102–14 (2003).
  • [59] Murry T., Singh S., Multidimensional analysis of male and female voices, The Journal of the Acoustical Society of America, 68, 1294–300 (1980).
  • [60] Necioglu B., Clements M., Barnwell T., Schmidt–Nielsen A., Perceptual relevance of objectively measured descriptors for speaker characterization, Proceedings of Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference on, 1998.
  • [61] Nordstrom K.I., Driessen P.F., Variable pre-emphasis lpc for modeling vocal effort in the singing voice, Proceedings of 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada 2006.
  • [62] O’shaughnessy D., Speech communication: human and machine, Addison-Wesley Pub. Co, Reading, Mass 1990.
  • [63] Parks T., Weisburn B., Classification of whale and ice sounds with a cochlear model, Proceedings of Acoustics, Speech, and Signal Processing, 1992. ICASSP-92., 1992 IEEE International Conference on, 1992.
  • [64] Pastiadis C., Papanikolaou G., Printza A., Application of glottal disturbogram as a novel tool for the description of vocal disturbances, Hippokratia, 12, 122–127 (2008).
  • [65] Pastiadis K., Contemporary voice analysis techniques for the speech impaired, Ph.D. thesis, Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 2002.
  • [66] Pols L.C.W., Van Der Kamp L.J.T., Plomp R., Perceptual and physical space of vowel sounds, The Journal of the Acoustical Society of America, 46, 458–467 (1969).
  • [67] Potocnik P., Govekar E., Grabec I., Application of psychoacoustic filtering for machine fault detection, Proceedings of 8th International Conference of the Slovenian Society for Non-Destructive Testing: “Application of Contemporary Non-Destructive Testing in Engineering”, Portoroz, Slovenia 2005.
  • [68] Prante H.U., Estimation of sound quality measures using fir neural networks, Acta Acustica united with Acustica, 85, 674–677 (1999).
  • [69] Reynolds D.A., Speaker identification and verification using gaussian mixture speaker models, Speech Communication, 17, 91–108 (1995).
  • [70] Rioux V., Mcadams S., Susini P., Peeters G., Wp2.1.5 psycho-acoustic timbre descriptors, Perception et cognition musicales, Analyse et synthèse sonores, IRCAM, 2002.
  • [71] Risset J., Wessel D.L., Exploration of timbre by analysis synthesis, [in:] The Psychology of Music, Academic Press, San Diego 1999.
  • [72] Rosson M.B., Cecala A.J., Designing a quality voice: an analysis of listeners’ reactions to synthetic voices, SIGCHI Bull., 17, 192–197 (1986).
  • [73] Saenz-lechon N., Godino–Llorente J.I., Osma–Ruiz V., Blanco–Velasco M., Cruz–Roldan F., Automatic assessment of voice quality according to the grbas scale, Proceedings of Engineering in Medicine and Biology Society, 2006. EMBS ’06. 28th Annual International Conference of the IEEE, 2006.
  • [74] Saenz–Lechon N., Godino–Llorente J.I., Osma–Ruiz V., Gomez–Vilda P., Methodological issues in the development of automatic systems for voice pathology detection, Biomedical Signal Processing and Control, 1, 120–128 (2006).
  • [75] Sankiewicz M., Budzynski G., Reflections on sound timbre definitions, Archives of Acoustics, 32, 591-602 (2007).
  • [76] Schlotthauer G., Torres M.E., Jackson–Menaldi C., Automatic diagnosis of pathological voices, Lisbon, Portugal 2006.
  • [77] Schuller B., Rigoll G., Lang M., Hidden markov model-based speech emotion recognition, Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’03), 2003.
  • [78] Shrivastav R., Multidimensional scaling of breathy voice quality: individual differences in perception, Journal of Voice: Official Journal of the Voice Foundation, 20, 211–22 (2006).
  • [79] Shrivastav R., Sapienza C.M., Objective measures of breathy voice quality obtained using an auditory model, The Journal of the Acoustical Society of America, 114, 2217–24 (2003).
  • [80] Susini P., Mcadams S., Winsberg S., A multidimensional technique for sound quality assessment, Acta Acustica united with Acustica, 85, 650–657 (1999).
  • [81] Susini P., Mcadams S., Winsberg S., Perry I., Vieillard S., Rodet X., Characterizing the sound quality of air-conditioning noise, Applied Acoustics, 65, 763–790 (2004).
  • [82] Terasawa H., Slaney M., Berger J., Perceptual distance in timbre space, Proc. of ICAD, 5, (2005).
  • [83] Tsang–Long Pao, Yu–Te Chen, Jun–Heng Yeh, Emotion recognition from mandarin speech signals, Proceedings of Chinese Spoken Language Processing, 2004 International Symposium on, 2004.
  • [84] Tucker S., An ecological approach to the classification of transient underwater acoustic events: perceptual experiments and auditory models, Ph.D. thesis, Department of Computer Science, University of Sheffield, 2003.
  • [85] Turkoglu I., Arslan A., Ilkay E., An expert system for diagnosis of the heart valve diseases, Expert Systems with Applications, 23, 229–236 (2002).
  • [86] Voiers W.D., Perceptual bases of speaker identity, Journal of the Acoustical Society of America, 36, 1065–1073 (1964).
  • [87] Wang Y., Lee C., Kim D., Xu Y., Sound-quality prediction for nonstationary vehicle interior noise based on wavelet pre-processing neural network model, Journal of Sound and Vibration, 299, 933–947 (2007).
  • [88] Webb A.L., Carding P.N., Deary I.J., Mackenzie K., Steen N., Wilson J.A., The reliability of three perceptual evaluation scales for dysphonia, European Archives of Oto-Rhino-Laryngology, 261, 429–434 (2004).
  • [89] Zotkin D., Shamma S., Ru P., Duraiswami R., Davis L., Pitch and timbre manipulations using cortical representation of sound, Proceedings of Multimedia and Expo, 2003. ICME ’03. Proceedings. 2003 International Conference on, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT8-0014-0038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.