PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bistatic sonars: sea trials, laboratory experiments and future surveys

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bistatic sonars use separate transmitter and receiver(s), optimising the information received from seabed/target(s) scattering. Laboratory experiments are ideal to understand scattering processes and to optimise data collection strategies. They can be full-scale or scaled down. In the latter case, the influence on bistatic scattering processes needs to be carefully weighed, to validate the transition to full-scale experiments. This is particularly relevant as sea trials are expensive, difficult to conduct, and generally impossible to repeat. This article presents the results from: (1) scaled experiments on bare seabed and targets, performed at Bath and other places; (2) full-scale experiments in the GESMA submarine pens during the EC-SITAR project and (3) sea trials from similar experiments in Italy and Sweden. These results are put into the wider context of other international efforts. These three approaches (scaled and full-scale experiments plus sea trials) can be used in synergy. This has important implications for future experiments, the design of surveys and instruments, and analyses of past/future acoustic datasets.
Rocznik
Strony
95--109
Opis fizyczny
Bibliogr 38 poz., rys.
Twórcy
autor
autor
  • University of Bath, Department of Physics, Claverton Down, Bath BA2 7AY, UK, pyspb@bath.ac.uk
Bibliografia
  • [1] Anstee S., Removal of range-dependent artifacts from sidescan sonar imagery, Technical Report DSTO-TN-0354, 2001.
  • [2] APL-UW High-Frequency Ocean Environmental Acoustic Models Handbook, Applied Physics Laboratory, University of Washington, APL-UW TR 9407, AEAS 9501, October 1994.
  • [3] Biffard B.R., Bloomer S.F., Chapman N.R., Preston J.M., Galloway J.L., Single-beam seabed characterization: a test-bed for controlled experiments, Proc. 8th ECUA, 2006.
  • [4] Blondel Ph., Rapid distinction of dumpsite objects using multiple-aspect scattering: Results from scaled experiments, Acoustics’2008, p. 3948, J. Acoust. Soc. Am., 123, 5, Pt. 2 (2008).
  • [5] Blondel Ph., Caiti A. [Eds.], Buried Waste in the Seabed – Acoustic Imaging and Bio-toxicity (Results from the European SITAR project), Springer-Praxis 2007.
  • [6] Blondel Ph., Fang D., Smith A., Jayasundere N., High-frequency bistatic imaging of proud targets – Influence of target orientation and type, Proc. 2nd UAM, Heraklion 2007.
  • [7] Blondel Ph., Murton B.J., Handbook of Seafloor Sonar Imagery, p. 314, PRAXISWiley & Sons, 1997.
  • [8] Blondel Ph., Pace N.G., Scaled tank experiments: Seabed and target scattering at high frequencies, Proc. 1st UAM. Heraklion 2005.
  • [9] Blondel Ph., Pace N.G., Heald G.J., Brothers R., High-frequency bistatic scattering: comparison of tank and sea experiments, Proc. IOA, 23, 2, 276–282, SOC 2001.
  • [10] Blondel Ph., McCloghrie P., Pace N.G., Heald G.J., Brothers R., Highfrequency bistatic bottom scattering: Modelling and experimental studies, pp. 21–29, Proc. 6th ECUA, Gdansk 2002.
  • [11] Blondel Ph., Dobbins P.F., Jayasundere N., Cosci M., High-frequency bistatic scattering experiments using proud and buried targets, [in:] Experimental Acoustic Inversion Techniques in Shallow-Water, Caiti A., Chapman R., Jesus S., Hermand J.-P. [Eds.], pp. 155–170, Springer, 2006.
  • [12] Canepa G., Pouliquen E., Pautet L., Pace N.G., Bistatic scattering from the seabed at high frequency, Proc. 7th ECUA, pp. 595–600, Delft 2004.
  • [13] Canepa G., Pace N.G., Pouliquen E., Field measurements of bistatic scattering strength of a sandy seabed at 118 kHz, Proc. 6th ECUA, pp. 183–188, Gdansk 2002.
  • [14] Choi J.W., Na J., Seong W., 240-kHz bistatic bottom scattering measurements in shallow water, IEEE J. Ocean. Eng., 26, 1, 54–62 (2001).
  • [15] Cosci M., Caiti A., Blondel Ph., Jayasundere N., A potential algorithm for target classification in sonar bistatic geometries, [in:] Boundary Influences in High-Frequency Shallow Water Acoustics, Pace N.G. and Blondel Ph. [Eds.], pp. 367–374, U. Bath, 2005.
  • [16] Dobbins P.F., Jayasundere N., Blondel Ph., Multiple-Aspect Imaging of Seafloor Targets – Analyses of Tank Experiment Datasets, pp. 469–474, Proc. 5th ECUA, Delft 2004.
  • [17] Drevet C., High-frequency wave propagation of the fast compressional wave in fine to medium sand: Acoustic measurements in tank, Proceedings of the Fifth European Conference on Underwater Acoustics ECUA-2000, 2000.
  • [18] Humphrey V.F., Jayasundere N., Dench M., Chinnery P.A., Experimental and theoretical studies of scattering by partially fluid-filled cylindrical shells, pp. 463–468, Proc. ECUA-2004, 2004.
  • [19] Karasalo I., Skogqvist P., Blondel Ph., Dobbins P.F., Buried waste inspection: acoustical images and inversion from multiple-aspect scattering, [in:] Buried Waste in the Seabed, Blondel Ph. and Caiti A. [Eds.], pp. 115–126, Springer-Praxis, 2007.
  • [20] Lucifredi I., Schmidt H., Subcritical scattering from buried elastic shells, J. Acoust. Soc. Am., 120, 6, 3566–3583 (2006).
  • [21] Lyons A.P., Pouliquen E., Advances in high-resolution seafloor characterization in support of high-frequency underwater acoustics studies: Techniques and Examples, Meas. Sci.&Tech., 15, R59–R72 (2004).
  • [22] Moren P., Caiti A., Zakharia M., Larsen M.A., Blondel Ph., Dybedal J., Acoustic sea trial in the Möja Söderfjärd dumpsite, [in:] Buried Waste in the Seabed, Blondel Ph. and Caiti A. [Eds.], pp. 87–102, Springer-Praxis, 2007.
  • [23] Pace N.G. et al., BORIS-SSA: Bottom Response from Inhomogeneities and Surface using Small Slope Approximation, Technical Report M-152, NATO URC (2004).
  • [24] Pace N.G., Blondel Ph. [Eds.], Boundary Influences in High-Frequency Shallow-Water Acoustics, University of Bath Press, 2005.
  • [25] Papadakis P., Taroudakis M., Sanchez P., Sessarego J.-P., Time and frequency measurements using scaled laboratory experiments of shallow-water acoustic propagation, Proc. 8th ECUA, 2006.
  • [26] Pouliquen E., Bergem O., Pace N.G., Time evolution modelling of seafloor scatter (1): Concept, J. Acoust. Soc. Am., 105, 6, 3136–3141 (1999).
  • [27] Richardson M.D. et al., The effects of seafloor roughness on acoustic scattering, Boundary Influences in High-Frequency Shallow Water Acoustics, 2005.
  • [28] Schmidt H. et al., GOATS’98: bistatic measurements of target scattering using autonomous underwater vehicles, SACLANTCEN Rep. SR-302, 1998.
  • [29] Simpson H.J., Houston B.H., Frederickson C.K., Lim R., Measurements and analysis of scattering from proud and buried targets in a shallow-water laboratory environment, Proceedings of the IEEE Conference Oceans’99, 1999.
  • [30] Tesei A., Maguer A., Fox W.L.J., Lim R., Schmidt H., Measurements and modelling of acoustic scattering from partially and completely buried spherical shells, J. Acoust. Soc. Am., 112, 5, 1817–1830 (2002).
  • [31] Tesei A., Zampolli M., Canepa G., At-sea measurements of acoustic elastic scattering by a 1.5-m long cylinder made of composite materials, pp. 505–510, 2nd UAM Proc., 2007.
  • [32] Tesei A., Fox W.L.J., Maguer A., Løvik A., Target parameter estimation using resonance scattering analysis applied to air-filled, cylindrical shells in water, J. Acoust. Soc. Am., 108, 6, 2891–2900 (2000).
  • [33] Williams K.L., Jackson D.R., Bistatic bottom scattering: Model, experiments and model/data comparison, J. Acoust. Soc. Am., 103, 1, 169–181 (1998).
  • [34] Williams K.L. et al., Underwater sand acoustics: A perspective derived from the acoustics experiment (SAX99), J. Acoust. Soc. Am., 113, 4, 2298 (2003).
  • [35] Zakharia M., Preparation des essais GESMA – Projet SITAR, internal report, [36] Zakharia M., Full-scale tank parametric sidescan sonar test, [in:] Buried Waste Seabed, Blondel Ph. and Caiti A. [Eds.], pp. 79–82, Springer-Praxis, 2007.
  • [37] Zampolli M., Tesei A., Jensen F.B., Blottman J.B., Finite element modelling tools for the detection and classification of buried objects in shallow [in:] Boundary Influences in High-Frequency Shallow Water Acoustics, Pace Blondel Ph. [Eds.], pp. 349–356, U. Bath, 2005.
  • [38] Zampolli M., Tesei A., Jensen F.B., Malm N., Blottman J.B., A computationally efficient finite element model with perfectly matched layers applied to scattering axially symmetric objects, J. Acoust. Soc. Am., 122, 3, 1472–1485 (2007).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT8-0014-0036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.