PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sound power radiated from rectangular plates

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An equation for calculating the sound power radiated from a rectangular plate with arbitrary boundary conditions is derived, in which the sound power radiated from the plate is represented in terms of the normal velocity distribution on the plate and a coupling matrix. The velocity distribution on the plate is expressed in terms of the modal amplitudes and normal modes. The coupling matrix for arbitrary boundary conditions is developed mathematically using the Rayleigh integral. Finally, an approach to compute the radiation efficiency for modes of vibration is presented and the radiation efficiency of the first four most efficient vibration modes for six different boundary conditions is presented.
Twórcy
autor
  • Auburn University, Mechanical Engineering Department, Auburn, AL 36849, USA, jameszou@live.com
Bibliografia
  • [1] Sun Q., Mcinerny S., Hardman B., Detection of a Helicopter Input Pinion Bearing Fault Using Interstitial Envelope Analysis, International Journal of Acoustics and Vibration, 11, 3, 137–143 (2006).
  • [2] Thanagasundram S., Schlindwein F.S., Autoregressive Order Selection for Rotating Machinery, International Journal of Acoustics and Vibration, 11, 3 144–154 (2006).
  • [3] Campos L.M.B.C., Serrao P.G.T.A., On the Acoustic Matching of Straight, Curved and Twisted Tubes, 13, 3, 100–111 (2008).
  • [4] Tammi K.M.J., Identification and Active Feedback-Feedforward Control of Rotor, International Journal of Acoustics and Vibration, 12, 1, 7–14 (2007).
  • [5] Zouari R., Antoni J., Ille J.L., Sidahmed M., Willaert M., Watremetz M., Cyclostationary Modeling of Reciprocating Compressors and Application to Valve Fault Detection, International Journal of Acoustics and Vibration, 12, 4, 116–124 (2007).
  • [6] Akesson H., Smirnova T., Claesson I., Hakansson L., On the Development of a Simple and Robust Active Control System for Boring Bar Vibration in Industry, International Journal of Acoustics and Vibration, 12, 4, 139–152 (2007).
  • [7] Simon A.S., Flowers G.T., Adaptive Disturbance Rejection and Stabilization for Rotor Systems with Internal Damping, International Journal of Acoustics and Vibration, 13, 1, 73–81 (2008).
  • [8] Storey I., Bourmistrova A., Subic A., Performance Measures of Comfort and Rattle Space Usage for Limited-Stroke Vehicle Suspension Systems, International Journal of Acoustics and Vibration, 13, 1, 82–90 (2008).
  • [9] Matsagar V.A., Jangid R.S., Dynamic Characterization of Base-Isolated Structures Using Analytical Shear-Beam Model, International Journal of Acoustics and Vibration, 11, 3, 132–136 (2006).
  • [10] Xu L., Jia X., Electromechanical Coupled Vibration for Double Coupled Micro Beams, International Journal of Acoustics and Vibration, 12, 1, 51–24 (2007).
  • [11] Chakraborty S.K., Sarkar S.K., Bhattacharya S.P., Frequency-response Analysis of Shear Vibration of Long Structures due to Surface Excitation, International Journal of Acoustics and Vibration, 12, 3, 109–115 (2007).
  • [12] Chakraborty S.K., Sarkar S.K., Response Analysis of Multi-Storey Structures on Flexible Foundation Due to Seismic Excitation, International Journal of Acoustics and Vibration, 13, 4, 165–171 (2008).
  • [13] Mohanty S.C., Parametric Instability of a Pretwisted Cantilever Beam with Localized Damage, International Journal of Acoustics and Vibration, 12, 4, 153–161 (2007).
  • [14] Venkatesham B., Pathak A.G., Munjal M.L., A One-dimensional Model for Prediction of Breakout Noise from a Finite Rectangular Duct with different Acoustic Boundary Conditions, International Journal of Acoustics and Vibration, 12, 3, 91–98 (2007).
  • [15] Chen L., Hansen C.H., He And Sammut K., Active Nonlinear Vibration Absorber Design for Flexible Structures, International Journal of Acoustics and Vibration, 12, 2, 51–59 (2007).
  • [16] Yang Y., Wang S., Hao N., Zhu Y., Tian Y., Li S., Research of On-Line Noise Source Identification Based on the Grey Neural Network, International Journal of Acoustics and Vibration, 13, 1, 144–150 (2008).
  • [17] Alam M.S., Tokhi M.O., Design of Command Shaper using Gain-delay Units and Particle Swarm Optimization Algorithm for Vibration Control of Flexible Systems, International Journal of Acoustics and Vibration, 12, 3, 99–108 (2007).
  • [18] Hornig K.H., Flowers G.T., Performance of Heuristic Optimization Methods in the Characterization of the Dynamic Properties of Sandwich Composite Materials, International Journal of Acoustics and Vibration, 12, 2, 60–68, (2007).
  • [19] Chavan A.T., Manik D.N., Optimum Design of Vibro-acoustic Systems Using SEA, International Journal of Acoustics and Vibration, 13, 1, 67–81 (2008).
  • [20] Vogel S.M., Skinner D.W., Natural frequencies of transversely vibrating uniform annular plates, J. Applied Mechanics, 32, 926–931 (1965).
  • [21] Leissa A.W., Vibration of plates, Vol. SP-160 (1969) NASA, Washington, D.C.: U.S. Government Printing Office.
  • [22] Leissa A.W., Laura P.A.A., Gutiérrez R.H., Transverse vibrations of circular plates having nonuniform edge constraints, J. Acoustical Society of America, 66, 1, 180–184 (1979).
  • [23] Pritchard R.L., Mutual acoustic impedance between radiators in an infinite rigid plane, J. Acoustical Society of America, 32, 6, 730–737 (1960).
  • [24] Greenspon J.E., Sherman C.H., Mutual radiation impedance and near-field pressure for pistons on a cylinder, J. Acoustical Society of America, 36, 1, 143–153 (1964).
  • [25] Thompson W. Jr., The computation of self- and mutual-radiation impedances for annular and elliptical pistons using Bouwkamp’s integral, J. Sound and Vibration, 17, 2, 221–233 (1971).
  • [26] Stepanishen P.R., Impulse response and radiation impedance of an annular piston, J. Acoustical Society of America, 56, 2, 305–312 (1974).
  • [27] Rdzanek W., Directional characteristic of a circular membrane vibrating under the effect of a force with uniform surface distribution, Archives of Acoustics, 10, 2, 179–190 (1985).
  • [28] Lee M.R., Singh R., Analytical formulations for annular disk sound radiation using structural modes, J. Acoustical Society of America, 95, 6, 3311–3323 (1994).
  • [29] Weisensel G.N., Natural frequency information for circular and annular plates, J. Acoustical Society of America, 82, 1, 13–16 (1987).
  • [30] Rdzanek W., Directional characteristic of a circular plate vibrating under the external pressure, Archives of Acoustics, 15, 1–2, 227–234 (1990).
  • [31] Rdzanek W., Acoustic radiation of a circular plate including the attenuation effect and influence of surroundings, Archives of Acoustics, 16, 3–4, 581–590 (1991).
  • [32] Kauffmann C., Efficiency of a monopole sound source in the vicinity of a water-loaded plate, J. Sound and Vibration, 221, 2, 251–272 (1999).
  • [33] Svensson U.P., Line integral model of transient radiation from planar pistons in baffles, Acta Acustica united with Acustica, 87, 307–315 (2001).
  • [34] Jabareen M., Eisenberger M., Free vibrations of non-homogeneous circular and annular membranes, J. Sound and Vibration, 240, 3, 409–429 (2001).
  • [35] Shuyu L., Acoustic field of flexural circular plates for air-coupled ultrasonic transducers, Acta Acustica united with Acustica, 86, 388–391 (2000).
  • [36] Rdzanek W.P. Jr., Engel Z., Directional characteristics of a planar annular plate for axially-symmetric free vibrations, Archives of Acoustics, 25, 1, 73–81 (2000).
  • [37] Rdzanek W.P. Jr., Engel Z., Asymptotic formulas for the acoustic power output of a clamped annular plate, Applied Acoustics, 60, 1, 29–43 (2000).
  • [38] Rdzanek W., Engel Z., Rdzanek W.P. Jr., Asymptotic formulas for the acoustic power output of a simply-supported circular plate, Acta Acustica united with Acustica, 87, 2, 206–214 (2001).
  • [39] Rdzanek W.P. Jr., Zawieska W.M., Vibroacoustic analysis of a simply supported rectangular plate of a power transformer casing, Archives of Acoustics, 28, 2, 117–125 (2002).
  • [40] Rdzanek W.P. Jr., Rdzanek W.J., The self power of a clamped circular plate. An analytical estimation, Archives of Acoustics, 28, 1, 59–66 (2003).
  • [41] Rdzanek W.P. Jr., The total sound power of some forced vibrations of a clamped annular plate in fluid, Archives of Acoustics, 27, 3, 203–215 (2002).
  • [42] Szemela K., Rdzanek W.P. Jr., Rdzanek W., The acoustic power radiated by a circular membrane excited for vibration both by means of the edge and by external surface load, Archives of Acoustics, 30, 1, 109–119 (2005).
  • [43] Iwaniec M., The influence of constructional parameters on stiffened plates sound radiation, Archives of Acoustics, 30, 4, 483–494 (2005).
  • [44] Szemela K., Rdzanek W.P. Jr., Rdzanek W., The acoustic power of a circular plate excited by non-uniform surface pressure, Archives of Acoustics, 31, 3, 309–317 (2006).
  • [45] Wallace C.E., Radiation resistance of a rectangular panel, Journal of the Acoustical Society of America, 51, 946 (1972).
  • [46] Cunefare K.A., The minimum radiation efficiency of baffled finite beams, Journal of the Acoustical Society of America, 90, 2521–2529 (1991).
  • [47] Currey M.N., Cunefare K.A., The radiation modes of baffled finite plates, Journal of the Acoustical Society of America, 98, 1570–1580 (1995).
  • [48] Nikiforov A.S., Radiation from a plate of finite dimensions with arbitrary boundary conditions, Soviet Physics Acoustics, 10, 178 (1964).
  • [49] Gomperts M.C., Sound radiation from baffled, thin, rectangular plates, Acustica, 37, 93–102 (1977).
  • [50] Magrab E.B., Vibrations of Elastic Structural Members, Sijthoff & Noordhoff, Maryland 1979.
  • [51] Clark R., Fuller C., Modal sensing of efficient acoustic radiators with polyvinylidene fluoride distributed sensors in active structural acoustic control approaches, Journal of the Acoustical Society of America, 91, 6, 3321–3329 (1992).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT8-0014-0031
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.