PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ultrasonic measurements of aqueous solutions of ?-cyclodextrin with alkyl pyridinium bromides

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ultrasonic measurements of the velocity and absorption coefficient, α/f2, of aqueous solutions of β-cyclodextrin with alkyl pyridinium bromides CnH2n+1C5H4NBr (n = 8, 10, 12), were carried out at the following temperatures: 288.2 K, 298.2 K, 308.2 K and 318.2 K, and frequency range from 1 MHz to 150 MHz. Concentration of the both components equaled 0.01 M. The occurrence of two ultrasonic relaxation processes has been reported. Thermodynamic and kinetic parameters related to these processes have been calculated. The obtained results have been compared with data published previously for α-cyclodextrin systems.
Rocznik
Strony
627--641
Opis fizyczny
Bibliogr. 55 poz., rys.
Twórcy
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Świętokrzyska 21, 00-049 Warszawa, Poland, abalcerz@ippt.gov.pl
Bibliografia
  • [1] BENDER M.L., et al., Cyclodextrin Chemistry, Springer Verlag, Berlin 1978.
  • [2] SZEJTLI J., Cyclodextrins and Their Inclusion Complexes, Akademiai Kiado, Budapest 1982.
  • [3] TANFORD C., The Hydrophobic Effect. Formation of Micelles and Biological Membranes, John Wiley & Sons, New York 1980.
  • [4] DE LISI R., LAZZARA G., MILIOTO S., MURATORE N., Characterization of the cyclodextrinsurfactant interactions by volume and enthalpy, J. Phys. Chem. B, 107, 47, 13150–13157 (2003).
  • [5] FUNASAKI N., YODO H., NEYA S., Stoichiometries and equilibrium constants of cyclodextrinsurfactant complexations, Bull. Chem. Soc. Jpn., 65, 5, 1323–1330 (1992).
  • [6] QU X.K., ZHU L.Y., LI L., WEI X.L., LIU F., SUN D.Z., Host-guest complexation of β-, -γ cyclodextrin with alkyl trimethyl ammonium bromides in aqueous solution, J Solution Chem., 36, 5, 643–650 (2007).
  • [7] SUN D.Z., WANG S.B., SONG M.Z., WEI X.L., YIN B.L., A microcalorimetric study of hostguest complexes of α-cyclodextrin with alkyl trimethyl ammonium bromides in aqueous solutions, J. Solution Chem., 34, 6, 701–712 (2005).
  • [8] ELI W.J., CHEN W.H., XUE Q.J., The association of anionic surfactants with β-cyclodextrin. An isothermal titration calorimeter study, J. Chem. Thermodyn., 31, 10, 1283–1296 (1999).
  • [9] LIVERI V.T., CAVALLARO G., GIAMMONA G., PITARRESI G., PUGLISI G., VENTURA C., Calorimetric investigation of the complex formation between surfactants and α-, β- and γ cyclodextrins, Thermochim. Acta, 199, 1, 125–132 (1992).
  • [10] SEHGAL P., SHARMA M., LARSEN K.L., WIMMER R., DOE H., OLTZEN D.E., Interactions of γ cyclodextrin with the mixed micelles of anionic surfactants and their inclusion complexes formation, J. Disper. Sci. Technol., 29, 6, 885–890 (2008).
  • [11] RAFATI A.A., BAGHERI A., ILOUKHANI H., ZARINEHZAD M., Study of inclusion complex formation between a homologous series of n-alkyltrimethylammonium bromides and β-cyclodextrin, using conductometric technique, J. Mol. Liq., 116, 1, 37–41 (2005).
  • [12] JUNQUERA E., PENA L., AICART E., Micellar behavior of the aqueous solutions of dodecylethyldimethylammonium bromide. A characterization study in the presence and absence of hydroxypropyl-β-cyclodextrin, Langmuir, 13, 2, 219–224 (1997)
  • [13] JUNQUERA E., PENA L., AICART E., Conductivity studies of the molecular encapsulation of sodium perfluoroctanoate by β-cyclodextrin derivatives, J. Inclus. Phenom. Mol., 24, 3, 233–239 (1996).
  • [14] AMAN E.S., SERVE D., A conductimetric study of the association between cyclodextrins and surfactants – application to the electrochemical study of a mixed aqueous system: substrate, cyclodextrin, surfactant, J. Colloid. Interface Sci., 138, 2, 365–375 (1990).
  • [15] PALEPU R., RICHARDSON J.E., REINSBOROUGH V.C., Binding constans of β-cyclodextrin/surfactant inclusion by conductivity measurements, Langmuir, 5, 1, 218–221 (1989).
  • [16] JOBE D.J., VERRAL R.E., PALEPU R., REINSBOROUGH V.C., Fluorescene and conductometric studies of potassium 2-(p-toluidinyl)naphthalene-6-sulfonate/cyclodextrin/surfactant systems, J. Phys. Chem., 92, 12, 3582–3586 (1988).
  • [17] PALEPU R., REINSBOROUGH V.C., Surfactant-cyclodextrin interactions by conductance measurements, Can. J. Chem., 66, 2, 325–328 (1988).
  • [18] SATAKE I., IKENOUE T., IAKESHITA T., HAYAKAWA K., MAEDA T., Conductometric and potentiometric studies of the association of α-cyclodextrin with ionic surfactants and their homologs, Bull. Chem. Soc. Jpn., 58, 10, 2746–2750 (1985).
  • [19] SATAKE I., YOSHIDA S., HAYAKAWA K., MAEDA T., KOSUMOTO Y., Conductometric determination of the association constants of β-cyclodextrin with amphiphilic ions, Bull. Chem. Soc. Jpn., 59, 12, 3991–3993 (1986).
  • [20] OKUBO T., KITANO H., ISE N., Conductometric studies on association of cyclodextrin with colloidal electrolytes, J. Phys. Chem., 80, 24, 2661–2664 (1976).
  • [21] HERSEY A., ROBINSON B.H., KELLY H.C., Mechanism of inclusion-compound formation for binding of organic dyes, ions and surfactants to α-cyclodextrin studied by kinetic methods based on competition experiments, J. Chem. Soc. Faraday Trans. 1, 82, 1271–1287 (1986).
  • [22] PARK J.W., SONG H.J., Association of anionic surfactants with β-cyclodexrin. Fluorescene-probed studies no the 1:1 and 1:2 compexation, J. Phys. Chem., 93, 17, 6454–6458 (1989).
  • [23] PARK J.W., PARK K.H., Inclusion of (aminostyryl)-1-methylpyridinium dyes by β-cyclodextrin and its use for fluorescent-probe studies on association of cationic and neutral molecules with β-cyclodextrin, J. Inclusion Phenom. Mol. Recognit. Chem., 17, 3, 277–290 (1994).
  • [24] JIANG Y.B., WANG X.J., Direct evidence for β-cyclodextrin-induced aggregation of ionic surfactant below critical micelle concentration, Appl. Spectrosc., 48, 11, 1428–1431 (1994).
  • [25] XING H., LIN S.S., YAN P., XIAO J.X., CHEN Y.M., NMR studies on selectivity of β-cyclodextrin to fluorinated/hydrogenated surfactant mixtures, J. Phys. Chem. B, 111, 28, 8089–8095 (2007).
  • [26] CABALEIRO–LAGO C., NILSSON M., VALENTE A.J.M., BONINI M., SODERMAN O., NMR diffusometry and conductometry study of the host-guest association between β-cyclodextrin and dodecane 1,12-bis(trimethylammonium bromide), J. Colloid. Interf. Sci., 300, 2, 782–787 (2006).
  • [27] GUO W., FUNG B.M., CHRISTIAN S.D., NMR study of cyclodextrin inclusion of fluorocarbon surfactants in solution, Langmuir, 8, 2, 446–451 (1992).
  • [28] MEHTA S.K., BHASIN K.K., MAMA S., SINGLA M.L., Micellar behavior of aqueous solutions of dodecyldimethylethylammonium bromide, dodecyltrimethylammonium chloride and tetradecyltrimethylammonium chloride in the presence of α, β-, HP β, and γ cyclodextrins, J. Colloid. Interf. Sci., 321, 2, 442–451 (2008).
  • [29] FUNASAKI N., ISHIKAWA S., NEYA S., 1:1 and 1:2 complexes between long-chain surfactant and α-cyclodextrin studied by NMR, J. Phys. Chem. B, 108, 28, 9593–9598 (2004).
  • [30] GOKTURK S., MAHRAMANLIOGLU M., TUNCAY M., Surface tension studies of lauryl sulfobetaine – β-cyclodextrin and dodecyltrimethylammonium bromide – β-cyclodextrin inclusion complexes in aqueous solution, Can. J. Chem., 77, 7, 1208–1213 (1999).
  • [31] DHARMAWARDANA U.R., CHRISTIAN S.D., TUCKER E.E., TAYLOR R.W., SCAMEHORN J.F., A surface tension method for determining binding constants for cyclodextrin inclusion complexes of ionic surfactants, Langmuir, 9, 9, 2258–2263 (1993).
  • [32] GONZALEZ–GAITANO G., CRESPO A., TARDAJOS G., Thermodynamic investigation (volume and compressibility) of the systems β-cyclodextrin plus n-alkyltrimethylammonium bromides plus water, J. Phys. Chem. B, 104, 8, 1869–1879 (2000).
  • [33] JUNQUERA E., TARDAJOS G., AICART E., Effect of the presence of β-cyclodextrin on the micellization process of sodium dodecyl sulfate or sodium perfluorooctanoate in water, Langmuir, 9, 5, 1213–1219 (1993).
  • [34] PENA L., JUNQUERA E., AICART E., Ultrasonic study of the molecular encapsulation and the micellization processes of dodecylethyldimethylammonium bromide-water solutions in the presence of β-cyclodextrin or 2,6-di-o-methyl- β -cyclodextrin, J. Solution Chem., 24, 10, 1075–1091 (1995).
  • [35] JOBE D.J., VERRAL R.E., JUNQUERA E., AICART E., Effects of β-cyclodextrin/surfactant complex formation on the surfactant monomer-micelle exchange rate in aqueous solutions of sodium perfluorooctanoate and β-cyclodextrin, J.Phys.Chem., 98, 42, 10814–10818 (1994).
  • [36] JOBE D.J., VERRALL R.E., JUNQUERA E., AICART E., Ultrasonic absorption studies of aqueous solutions of cetyltrimethylammonium bromide and 2,6-O-dimethyl-β-cyclodextrin, J. Colloid. Interf. Sci., 189, 2, 294–298 (1997).
  • [37] WAN JUNUS W.M.Z., TAYLOR J., BLOOR D.M., HALL D.G., WYN-JONES E.J., Electrochemical measurements on the binding of sodium dodecyl sulfate and dodecyltrimethylammonium bromide with α- and β-cyclodextrins, J. Phys. Chem., 96, 22, 8979–8982 (1992).
  • [38] PATIL S.R., TURMINE M., PEYRE V., DURAND G., PUCCI B., Study of β-cyclodextrin/fluorinated trimethyl ammonium bromide surfactant inclusion complex by fluorinated surfactant ion selective electrode, Talanta, 74, 1, 72–77 (2007).
  • [39] RAFATI A.A., BAGHERI A., Electrochemical and thermodynamic studies of inclusion complex formation between tetradecyltrimethylammonium bromide (TTAB) and β-cyclodextrin (β-CD), Bull. Chem. Soc. Jpn., 77, 3, 485–490 (2004).
  • [40] GHARIBI H., JALILI S., RAJABI T., Electrochemical studies of interaction between cetyltrimethylammonium bromide and α-, β-cyclodextrins at various temperature, Colloid. Surface A, 175, 3, 361–369 (2000).
  • [41] TOMINAGA T., HACHITSU D., KAMADO M., Interactions between the tetradecyltrimethylammonium ion and α-, β- and γ cyclodextrin in water as studied by a surfactant-selective electrode, Langmuir, 10, 12, 4676–4680 (1994).
  • [42] BERNASCONI C.F., Relaxation Kinetics, Academic Press, New York 1976.
  • [43] JUSZKIEWICZ A., ANTOSIEWICZ A., Ultrasonic Spectroscopy in Molecular Biophysics (in monograph: Biospectroscopy) [in Polish], PWN, Warszawa 1990.
  • [44] EGGERS F., FUNCK TH., Ultrasonic measurements with milliliter liquid samples in the 0.5–100 MHz range, Rev. Sci. Instrum., 44, 8, 969–977 (1973).
  • [45] GALIŃSKI G., KOZŁOWSKI Z., Ultrasonic spectroscopy equipment for the 0.5–15 MHz frequencyrange, Sci. Instrum., 4, 1, 43–50 (1989).
  • [46] BALCERZAK A., BAZIOR Z., KOZŁOWSKI Z., Automatized set-up for ultrasonic measurements in liquids by resonator (Eggers) method [in Polish], IFTR Reports, 17, 1–14 (1992).
  • [47] BALCERZAK A., PŁOWIEC R., Characteristic and construction of IFTR’s set-up for ultrasonic investigation of relaxation phenomena in liquids in 10–150 MHz frequency range [in Polish], IFTR Reports, 21, 1–16 (1994).
  • [48] BALCERZAK A., PŁOWIEC R., JUSZKIEWICZ A., Absorption of ultrasonic waves in aqueous solutions of α-cyclodextrin with alkylpyridinium or alkyltrimethylammonium bromides, Arch. Acoust., 23, 3, 411–428 (1998).
  • [49] BALCERZAK A., PŁOWIEC R., JUSZKIEWICZ A., Investigations of ultrasonic velocity and absorption in aqueous solutions of α- and β-cyclodextrin with sodium alkyl sulfates, Arch. Acoust., 26, 1, 37–63 (2001).
  • [50] LAMB J., Physical Acoustics, W.P. MASON [Ed.], Vol. II, Part A, Ch. 4, Academic Press, New York 1965.
  • [51] CHEN C.C., PETRUCCI S., Mechanism of complexation of 18-crown-6 with alkali metal ions in methanol, J. Phys. Chem., 86, 14, 2601–2605 (1982).
  • [52] RODRIGUEZ L.J., EYRING E.M., PETRUCCI S., Isomeric relaxation kinetics of the macrocycles 18-crown-6, diaza-18-crown-6, and cryptand 222 in acetonitrile and methanol, J. Phys. Chem., 93, 17, 6357–6363 (1989).
  • [53] JOBE D.J., VERRALL R.F., JUNQUERAE., AICART E., Effects of surfactant/β-cyclodextrin complex formation on the surfactant monomer-micelle exchange rate in aqueous solution of decyltrimethylammonium bromide, J. Phys. Chem., 97, 6, 1243–1248 (1993).
  • [54] KATO S., NOMURA H., MIYAHARA Y., Ultrasonic relaxation study of aqueous solutions of cyclodextrins, J. Phys. Chem., 89, 25, 5417–5421 (1985).
  • [55] RAUH S., KNOCHE W., Ultrasonic attenuation in aqueous solutions of α-, β-, and γ cyclodextrins, J. Chem. Soc. Faraday Trans., 81, 1, 2551–2559 (1985).
  • [56] BALCERZAK A., Ultrasonic investigations of inclusion complexes of cyclodextrins with amphiphilic substances – further results and conclusions, Arch. Acoust., 29, 3, 461–466 (2004).-cyclodextrins at various temperature, Colloid. Surface A, 175, 3, 361–369 (2000).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT8-0014-0027
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.