PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quo vadis, ultrasonics of bone? Present state and future trends

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Although it has been over 20 years since the first recorded use of a quantitative ultrasound (QUS) technology to predict bone fragility, the field has not yet reached its maturity. QUS have the potential to predict fracture risk in a number of clinical circumstances and has the advantages of being non-ionizing, inexpensive, portable, highly acceptable to patients and repeatable. However, the wide dissemination of QUS in clinical practice is still limited and suffering form the absence of clinical consensus on how to integrate QUS technologies in bone densitometry armamentarium. There are a number of critical issues that need to be addressed in order to develop the role of QUS within rheumatology. These include issues of technologies adapted to measure the central skeleton, data acquisition and signal processing procedures to reveal bone properties beyond bone mineral quantity and elucidation of the complex interaction between ultrasound and bone structure. In this presentation, we review recent developments to assess bone mechanical properties. We conclude with suggestions of future lines and trends in technology challenges and research areas such as new acquisition modes, advanced signal processing techniques, and models.
Rocznik
Strony
553--564
Opis fizyczny
Bibliogr. 44 poz., rys.
Twórcy
autor
autor
autor
  • University Pierre et Marie Curie, Laboratoire d'Imagerie Paramétrique, UMR CNRS 7623 15 rue de l'Ecole de Médecine, F-75006, Paris, France, laugier@lip.bhdc.jussieu.fr
Bibliografia
  • [1] HANS D., KRIEG M.A., The Clinical Use of Quantitative Ultrasound (QUS) in the Detection and Management of Osteoporosis, IEEE Trans Ultrason Ferroelectr Freq. Control, 55, 2008.
  • [2] SIEGEL I.M., ANAST G.T., FIEFLDS T., The determination of fracture healing by measurement of sound velocity across the fracture site, Surg Gynecol Obstet, 107, 327–332 (1958).
  • [3] LANGTON C.M., PALMER S.B., PORTER S.W., The measurement of broadband ultrasonic attenuation in cancellous bone, Eng. Med., 13, 89–91 (1984).
  • [4] LAUGIER P., DROIN P., LAVAL–JEANTET A.M., BERGER G., In vitro assessment of the relationship between acoustic properties and bone mass density of the calcaneus by comparison of ultrasound parametric imaging and quantitative computed tomography, Bone, 20, 157–165 (1997).
  • [5] LAUGIER P., FOURNIER B., BERGER G., Ultrasound parametric imaging of the calcaneus: in vivo results with a new device, Calcif Tissue Int., 58, 326–331 (1996).
  • [6] GOMEZ M.A., DEFONTAINE M., GIRAUDEAU B., CAMUS E., COLIN L., LAUGIER P., PATAT F., In vivo performance of a matrix-based quantitative ultrasound imaging device dedicated to calcaneus investigation, Ultrasound Med. Biol., 28, 1285–1293 (2002).
  • [7] KAUFMAN J.J., LUOC G., CONROYD D., JOHNSONE W.A., ALTMANE R.L., SIFFERT R.S., New ultrasound system for bone assessment, presented at Medical Imaging, San Diego 2004.
  • [8] BARKMANN R., LAUGIER P., MOSER U., DENCKS S., KLAUSNER M., PADILLA F., HAÏAT G., HELLER M., GLÜER C.-C., In vivo measurements of ultrasound transmission through the human proximal femur, Ultrasound Med. Biol., 2008.
  • [9] HAÏAT G., PADILLA F., BARKMANN R., DENCKS S., MOSER U., GLÜER C.C., LAUGIER P., Optimal prediction of bone mineral density with ultrasonic measurements in excised human femur, Calcif Tissue Int., 77, 186–192 (2005).
  • [10] GRONDIN J., GRIMAL Q., LAUGIER P., Two-dimensional simulation of circumferential wave propagation in cortical bone at the femoral neck: sensitivity to bone geometry, J. Acoust. Soc. Am., 123, 3633 (2008).
  • [11] BOSSY E., TALMANT M., DEFONTAINE M., PATAT F., LAUGIER P., Bidirectional axial transmission can improve accuracy and precision of ultrasonic velocity measurement in cortical bone: a validation on test materials, IEEE Trans. Ultrason Ferroelectr Freq. Control, 51, 71–79 (2004).
  • [12] PHAM T., TALMANT M., LAUGIER P., Variability of velocities provided by axial transmission due to irregular geometry of cortical bones, J. Acoust. Soc. Am., 123, 3635 (2008).
  • [13] LAUGIER P., BARON C., TALMANT M., Quantitative ultrasound for cortical bone characterization, Osteoporosis Int., 19 [in press].
  • [14] TATARINOV A., SARVAZYAN N., SARVAZYAN A., Use of multiple acoustic wave modes for assessment of long bones: model study, Ultrasonics, 43, 672–680 (2005).
  • [15] BOSSY E., TALMANT M., LAUGIER P., Effect of bone cortical thickness on velocity measurements using ultrasonic axial transmission: a 2D simulation study, J. Acoust. Soc. Am., 112, 297–307 (2002).
  • [16] DANIEL I.M., LIBER T., LABEDZ R.H., Wave propagation in transversely impacted composite laminates, Experimental Mechanics, 19, 9–16 (1979).
  • [17] BOSSY E., TALMANT M., LAUGIER P., Three-dimensional simulations of ultrasonic axial transmission velocity measurement on cortical bone models, J. Acoust. Soc. Am., 115, 2314–2324 (2004).
  • [18] OUEDRAOGO E., LASAYGUES P., LEFEBVRE J.P., GINDRE M., TALMANT M., LAUGIER P., Contrast and velocity ultrasonic tomography of long bones, Ultrason Imaging, 24, 139–160 (2002).
  • [19] MOILANEN P., TALMANT M., NICHOLSON P.H., CHENG S., TIMONEN J., LAUGIER P., Ultrasonically determined thickness of long cortical bones: Three-dimensional simulations of in vitro experiments, J. Acoust. Soc. Am., 122, 2439–2445 (2007).
  • [20] TA D.A., HUANG K., WANG W.Q., WANG Y.Y., LE L.H., Identification and analysis of multimode guided waves in tibia cortical bone, Ultrasonics, 44, e279–284 (2006).
  • [21] SASSO M., HAÏAT G., TALMANT M., LAUGIER P., NAILI S., Singular Value Decomposition-Based Wave Extraction in Axial Transmission: Application to Cortical Bone Ultrasonic Characterization, IEEE Trans. Ultrason Ferroelectr. Freq. Control, 55 (2008).
  • [22] PROTOPAPPAS V.C., BAGA D.A., FOTIADIS D.I., LIKAS A.C., PAPACHRISTOS A.A., MALIZOS K.N., An ultrasound wearable system for the monitoring and acceleration of fracture healing in long bones, IEEE Trans. Biomed Eng., 52, 1597–1608 (2005).
  • [23] BOSSY E., PADILLA F., PEYRIN F., LAUGIER P., Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography, Phys. Med. Biol., 50, 545–556 (2005).
  • [24] BOSSY E., LAUGIER P., PADILLA F., Attenuation in trabecular bone : a face-to-face comparison between numerical simulation and experimental results, J. Acoust. Soc. Am., 122, 2469–2475 (2007).
  • [25] BOSSY E., PADILLA F., PEYRIN F., LAUGIER P., Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography, Phys. Med. Biol., 50, 5545–5556 (2005).
  • [26] BIOT M., Generalized theory of acoustic propagation in porous dissipative media, J. Acoust. Soc. Am., 34, 1254–1264 (1962).
  • [27] BIOT M.A., Theory of propagation of elastic waves in a fluid-satured porous solid. I. Low-frequency range, Journal of the Acoustical Society of America, 28, 168–178 (1956).
  • [28] BIOT M.A., Theory of propagation of elastic waves in a fluid-satured porous solid. II. Higher frequency range, Journal of the Acoustical Society of America, 28, 179–191 (1956).
  • [29] FELLAH Z.E., CHAPELON J.Y., BERGER S., LAURIKS W., DEPOLLIER C., Ultrasonic wave propagation in human cancellous bone: application of Biot theory, J. Acoust. Soc. Am., 116, 61–73 (2004).
  • [30] HOSOKAWA A., OTANI T., Ultrasonic wave propagation in bovine cancellous bone, J. Acoust. Soc. Am., 101, 1–5 (1997).
  • [31] Hosokawa A., Otani T., Acoustic anisotropy in bovine cancellous bone, Journal of Acoustical Society of America, 103, 2718–2722 (1998).
  • [32] WILLIAMS J.L., Ultrasonic wave propagation in cancellous and cortical bone: Prediction of experimental results by Biot’s theory, Journal of the Acoustical Society of America, 91, 1106–1112 (1992).
  • [33] WEAR K.A., LAIB A., STUBER A.P., REYNOLDS J.C., Comparison of measurements of phase velocity in human calcaneus to Biot theory, J. Acoust. Soc. Am., 117, 3319–3324 (2005).
  • [34] ALBRECHT T., BLOMLEY M.J., BURNS P.N., WILSON S., HARVEY C.J., LEEN E., CLAUDON M., CALLIADA F., CORREAS J.M., LAFORTUNE M., CAMPANI R., HOFFMANN C.W., COSGROVE D.O., LEFEVRE F., Improved detection of hepatic metastases with pulse-inversion US during the liver-specific phase of SHU 508A: multicenter study, Radiology, 227, 361–370 (2003).
  • [35] LEE K.I., YOON S.W., Comparison of acoustic characteristics predicted by Biot’s theory and the modified Biot-Attenborough model in cancellous bone, J. Biomech., 39, 364–368 (2006); Epub 2005, Jan 28.
  • [36] PAKULA M., PADILLA F., KACZMAREK M., LAUGIER P., Application of Biot’s theory to ultrasonic characterization of human cancellous bones. Part 1. Determination of structural, material and mechanical properties, J. Acoust. Soc. Am., 123, 2415–2423 (2008).
  • [37] FELLAH Z.E., FELLAH M., SEBAA N., LAURIKS W., DEPOLLIER C., Measuring flow resistivity of porous materials at low frequencies range via acoustic transmitted waves, J. Acoust. Soc. Am., 119, 1926–1928 (2006).
  • [38] FINK M., CARDOSO J.F., LAUGIER P., Diffraction effect analysis in medical echography, Acta Electronica, 26, 59–80 (1984).
  • [39] HUGHES E.R., LEIGHTON T.G., PETLEY G.W., WHITE P.R., Ultrasonic propagation in cancellous bone: a new stratified model, Ultrasound Med Biol., 25, 811–821 (1999).
  • [40] STRELITZKI R., PAECH V., NICHOLSON P.H., Measurement of airborne ultrasonic slow waves in calcaneal cancellous bone, Med. Eng. Phys., 21, 215–223 (1999).
  • [41] LEE K.I., HUGHES E.R., HUMPHREY V.F., LEIGHTON T.G., CHOI M.J., Empirical angledependent Biot and MBA models for acoustic anisotropy in cancellous bone, Phys. Med. Biol., 52, 59–73 (2007); Epub 2006, Dec 6.
  • [42] PAKULA M., PADILLA F., KACZMAREK M., LAUGIER P., Application of Biot’s theory to ultrasonic characterization of human cancellous bones: determination of structural, material, and mechanical properties, J. Acoust. Soc. Am., 123, 2415–2423 (2008).
  • [43] HAÏAT G., PADILLA F., PEYRIN F., LAUGIER P., Fast wave ultrasonic propagation in trabecular bone: numerical study of the influence of porosity and structural anisotropy, J. Acoust. Soc. Am., 123, 1694–1705 (2008).
  • [44] HAÏAT G., PADILLA F., PEYRIN F., LAUGIER P., Variation of ultrasonic parameters with microstructure and material properties of trabecular bone: a 3D model simulation, J. Bone Miner Res., 22, 665–674 (2007).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT8-0014-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.