Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the main issues related to music information retrieval (MIR) domain. MIR is a multi-discipline area. Within this domain, there exists a variety of approaches to musical instrument recognition, musical phrase classification, melody classification (e.g. query-by-humming systems), rhythm retrieval, high-level-based music retrieval such as looking for emotions in music or differences in expressiveness, music search based on listeners' preferences, etc. The key-issue lies, however, in the parameterization of a musical event. In this paper some aspects related to MIR are shortly reviewed in the context of possible and current applications to this domain.
Wydawca
Czasopismo
Rocznik
Tom
Strony
483--496
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
autor
- Gdańsk University of Technology, Multimedia Systems Department, Narutowicza 11/12, 80-952 Gdańsk, Poland, bozenka@sound.eti.pg.gda.pl
Bibliografia
- [1] BURGES C.J.C., A Tutorial on Support Vector Machines for Pattern Recognition, Kluwer Academic Publisher, Boston 1998.
- [2] CHUDY M., Automatic identification of music performer using the linear prediction cepstral coefficients method, Archives of Acoustics, 33, 1, 27–33 (2008).
- [3] DZIUBINSKI M., KOSTEK B., Octave Error Immune and Instantaneous Pitch Detection Algorithm, J. New Music Research, 34, 273–292 (2005).
- [4] http://www.chiariglione.org/MPEG/standards/mpeg-7/mpeg-7.htm#E12E46 (information onMPEG 7 standard).
- [5] http://ismir2007.ismir.net (International Conference on Music Information Retrieval website).
- [6] http://weka.classifiers.functions.supportVector (information on SVM implemented in WEKA system).
- [7] http://www.cs.waikato.ac.nz/ml/weka/ (information on WEKA classifier package).
- [8] http://www.soft-computing.de/def.html (information on soft computing methods).
- [9] http://svm.sdsc.edu/svm-overview.html (information on SVM).
- [10] KIM H.-G., BURRED J., SIKORA T., How efficient is MPEG-7 for general sound recognition, Proceedings of the Audio Engineering Society (AES04) International Conference, London. Retrieved, March 16, 2004.
- [11] KOSTEK B., Soft Computing in Acoustics, Applications of Neural Networks, Fuzzy Logic and Rough Sets to Musical Acoustics, Studies in Fuzziness and Soft Computing, Physica Verlag, Heildelberg, New York 1999.
- [12] KOSTEK B., Perception-Based Data Processing in Acoustics. Applications to Music Information Retrieval and Psychophysiology of Hearing, Springer Verlag, Series on Cognitive Technologies, Berlin, Heidelberg, New York 2005.
- [13] KOSTEK B., CZY˙Z EWSKI A., Representing Musical Instrument Sounds for their Automatic Classification, J. Audio Eng. Soc., 49, 768–785 (2001).
- [14] KOSTEK B., WIECZORKOWSKA A., Parametric representation of musical sounds, Archives of Acoustics, 22, 1, 3–26 (1997).
- [15] KOSTEK B., KRÓLIKOWSKI R., Application of artificial neural networks to the recognition of musical sounds, Archives of Acoustics, 22, 1, 27–50 (1997).
- [16] KOSTEK B., Applying computational intelligence to musical acoustics, Archives of Acoustics, 32, 3, 617–629 (2007).
- [17] LARTILLOT O., MIR toolbox 1.0 User Guide, University of Jyvaskyla, Finland 2007.
- [18] LINDSAY A., HERRE J., MPEG-7 and MPEG-7 Audio – An Overview, 49, 7–8, 589–594 (2001).
- [19] PAWLAK Z., SKOWRON A., Rough sets and Boolean reasoning, Information Sciences, 177, 1, 41–73 (2007).
- [20] RABINER L., On the use of autocorrelation analysis for pitch detection, IEEE Trans. ASSP, 25, 24–33 (1977).
- [21] SZCZERBA M., CZY˙Z EWSKI A., Pitch Detection Enhancement Employing Music Prediction, J. Intelligent Information Systems, 24, 2–3, 223–251 (2005).
- [22] WUST O., CELM O., An MPEG-7 Database System and Application for Content-Based Management and Retrieval of Music, ISMIR 2004, Barcelona, Spain, October 10–14, 2004.
- [23] WITULSKI B., ŁUKASIK E., Multimedia presentation of musical instruments, Archives of Acoustics, 33, 1, 35–41 (2008).
- [24] WOŁKOWICZ J., KULKA Z., KEŠELJ V., n-gram-based approach to composer recognition, Archives of Acoustics, 33, 1, 43–55 (2008).
- [25] WÓJCIK J., KOSTEK B., Computational complexity of the algorithm creating hypermetric rhythmic hypotheses, Archives of Acoustics, 33, 1, 57–63 (2008).
- [26] VAPNIK V.N., Statistical Learning Theory, Wiley, New York 1998.
- [27] ZWAN P., KOSTEK B., System for Automatic Singing Voice Recognition, J. Audio Eng. Soc., 56, 9, 710–723 (2008).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT8-0014-0013