PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Music information analysis and retrieval techniques

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the main issues related to music information retrieval (MIR) domain. MIR is a multi-discipline area. Within this domain, there exists a variety of approaches to musical instrument recognition, musical phrase classification, melody classification (e.g. query-by-humming systems), rhythm retrieval, high-level-based music retrieval such as looking for emotions in music or differences in expressiveness, music search based on listeners' preferences, etc. The key-issue lies, however, in the parameterization of a musical event. In this paper some aspects related to MIR are shortly reviewed in the context of possible and current applications to this domain.
Rocznik
Strony
483--496
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
autor
Bibliografia
  • [1] BURGES C.J.C., A Tutorial on Support Vector Machines for Pattern Recognition, Kluwer Academic Publisher, Boston 1998.
  • [2] CHUDY M., Automatic identification of music performer using the linear prediction cepstral coefficients method, Archives of Acoustics, 33, 1, 27–33 (2008).
  • [3] DZIUBINSKI M., KOSTEK B., Octave Error Immune and Instantaneous Pitch Detection Algorithm, J. New Music Research, 34, 273–292 (2005).
  • [4] http://www.chiariglione.org/MPEG/standards/mpeg-7/mpeg-7.htm#E12E46 (information onMPEG 7 standard).
  • [5] http://ismir2007.ismir.net (International Conference on Music Information Retrieval website).
  • [6] http://weka.classifiers.functions.supportVector (information on SVM implemented in WEKA system).
  • [7] http://www.cs.waikato.ac.nz/ml/weka/ (information on WEKA classifier package).
  • [8] http://www.soft-computing.de/def.html (information on soft computing methods).
  • [9] http://svm.sdsc.edu/svm-overview.html (information on SVM).
  • [10] KIM H.-G., BURRED J., SIKORA T., How efficient is MPEG-7 for general sound recognition, Proceedings of the Audio Engineering Society (AES04) International Conference, London. Retrieved, March 16, 2004.
  • [11] KOSTEK B., Soft Computing in Acoustics, Applications of Neural Networks, Fuzzy Logic and Rough Sets to Musical Acoustics, Studies in Fuzziness and Soft Computing, Physica Verlag, Heildelberg, New York 1999.
  • [12] KOSTEK B., Perception-Based Data Processing in Acoustics. Applications to Music Information Retrieval and Psychophysiology of Hearing, Springer Verlag, Series on Cognitive Technologies, Berlin, Heidelberg, New York 2005.
  • [13] KOSTEK B., CZY˙Z EWSKI A., Representing Musical Instrument Sounds for their Automatic Classification, J. Audio Eng. Soc., 49, 768–785 (2001).
  • [14] KOSTEK B., WIECZORKOWSKA A., Parametric representation of musical sounds, Archives of Acoustics, 22, 1, 3–26 (1997).
  • [15] KOSTEK B., KRÓLIKOWSKI R., Application of artificial neural networks to the recognition of musical sounds, Archives of Acoustics, 22, 1, 27–50 (1997).
  • [16] KOSTEK B., Applying computational intelligence to musical acoustics, Archives of Acoustics, 32, 3, 617–629 (2007).
  • [17] LARTILLOT O., MIR toolbox 1.0 User Guide, University of Jyvaskyla, Finland 2007.
  • [18] LINDSAY A., HERRE J., MPEG-7 and MPEG-7 Audio – An Overview, 49, 7–8, 589–594 (2001).
  • [19] PAWLAK Z., SKOWRON A., Rough sets and Boolean reasoning, Information Sciences, 177, 1, 41–73 (2007).
  • [20] RABINER L., On the use of autocorrelation analysis for pitch detection, IEEE Trans. ASSP, 25, 24–33 (1977).
  • [21] SZCZERBA M., CZY˙Z EWSKI A., Pitch Detection Enhancement Employing Music Prediction, J. Intelligent Information Systems, 24, 2–3, 223–251 (2005).
  • [22] WUST O., CELM O., An MPEG-7 Database System and Application for Content-Based Management and Retrieval of Music, ISMIR 2004, Barcelona, Spain, October 10–14, 2004.
  • [23] WITULSKI B., ŁUKASIK E., Multimedia presentation of musical instruments, Archives of Acoustics, 33, 1, 35–41 (2008).
  • [24] WOŁKOWICZ J., KULKA Z., KEŠELJ V., n-gram-based approach to composer recognition, Archives of Acoustics, 33, 1, 43–55 (2008).
  • [25] WÓJCIK J., KOSTEK B., Computational complexity of the algorithm creating hypermetric rhythmic hypotheses, Archives of Acoustics, 33, 1, 57–63 (2008).
  • [26] VAPNIK V.N., Statistical Learning Theory, Wiley, New York 1998.
  • [27] ZWAN P., KOSTEK B., System for Automatic Singing Voice Recognition, J. Audio Eng. Soc., 56, 9, 710–723 (2008).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT8-0014-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.