PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Size Effects in Problems of Footings on Sand within Micro-Polar Hypoplasticity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Numerical FE investigations of size effects in problems of footings on sand were performed. Micro-polar hypoplastic constitutive model was used to describe a mechanical behaviour of a cohesionless granular material during a monotonic deformation path. The FE analyses were carried out with three different footing widths. In deterministic calculations, a uniform distribution of initial void ratio was used. In statistical calculations, initial void ratios took the form of random spatial fields described by a truncated Gaussian random distribution. In order to reduce the number of stochastic realizations without sacrificing the accuracy of the calculations, a stratified sampling method was applied. The numerical results were compared with corresponding laboratory tests by Tatsuoka et al (1997). The numerical results show that the bearing capacity of footings decreases with increasing specimen size. If the initial void ratio is stochastically distributed, the mean bearing capacity of footings may be larger than the deterministic value. The statistical size effect is smaller than the deterministic one.
Twórcy
autor
autor
  • Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-952 Gdansk, Poland, tejchmk@pg.gda.pl
Bibliografia
  • 1. Aste T., Di Matteo T., Saadatfar M. and Senden T. J. (2007) An invariant distribution in static granular media, Europhysics Letters (in press).
  • 2. Bazant Z. and Planas J. (1998) Fracture and size effect in concrete and other quasi-brittle materials, CRC Press LLC.
  • 3. Bätcke W. (1982) Tragf¨ahigkeit gedrungener K¨orper im geneigten Halbraum, Dissertation at the University Braunschweig.
  • 4. Bauer E. (1996) Calibration of a comprehensive hypoplastic model for granular materials, Soils and Foundations, 36 (1), 13–26.
  • 5. Bielewicz E. and Górski J. (2002) Shell with random geometric imperfections. Simulation-based approach, International Journal of Non-linear Mechanics, 37 (4–5), 777–784.
  • 6. Ehlers W., Ramm E., Diebels S. and D’Addetta G. A. (2003) From particle ensembles to Cosserat continua: homogenisation of contact forces towards stresses and couple stresses, Int. J. Solids Structures, 40, 6681–6702.
  • 7. Fenton G. A. and Griffiths D. V. (2002) Probabilistic foundation settlement on spatially random soil, J. Geotech. Geoenvironment. Eng., 128 (5), 381–389.
  • 8. Górski J. (2006) Non-linear models of structures with random geometric and material imperfections simulation-based approach, Gdansk University of Technology, 68.
  • 9. Górski J., Bobinski J. and Tejchman J. (2008) FE-simulations of size effects in granular and quasi-brittle materials, Proc. Int. Conference Solmech, Gdansk, (eds.: Kotulski Z., Kowalczyk P. and Sosnowski W.), IPPT, 216–217.
  • 10. Groen A. E. (1997) Three-dimensional elasto-plastic analysis of soils, PhD Thesis, Delft University, 1–114.
  • 11. Gudehus G. (1996) Comprehensive constitutive equation for granular materials, Soils and Foundations, 36 (1), 1–12.
  • 12. Gudehus G. and N¨ubel K. (2004) Evolution of shear bands in sand, Geotechnique, 113, 54 (3), 187–201.
  • 13. Gudehus G. (2006) Seismo-hypoplasticity with a granular temperature, Granular Matter, 8 (2), 93–102.
  • 14. Herle I. and Gudehus G. (1999) Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies, Mechanics of Cohesive-Frictional Materials, 4, 5, 461–486.
  • 15. Herle I. and Kolymbas D. (2004) Hypoplasticity for soils with low friction angles, Computers and Geotechnics, 31, 365–373.
  • 16. Huang W. X, Wu W, Sun D. A. and Sloan S. (2006) A simple hypoplastic model for normally consolidated clay, Acta Geotech., 1 (1), 15–27.
  • 17. Hurtado J. E. and Barbat A. H. (1998) Monte Carlo techniques in computational stochastic mechanics, Archives of Computational Method in Engineering, 5 (1), 3–30.
  • 18. Jarzombek G. (1989) Experimentelle und numerische Untersuchungen zum Spannungs-Verformungsverhalten von trockenem Sand am Beispiel einer Streifengr¨undung, PhD thesis, Universit¨at Weimer, Germany.
  • 19. Knabe W., Przewłócki J. and Rózynski G. (1998) Spatial averages for linear elements for two-parameter random field, Prob. Engng. Mech., 13 (3), 147–167.
  • 20. Maier T. (2002) Numerische Modellierung der Entfestigung im Rahmen der Hypoplastizit¨at, PhD Thesis, University of Dortmund.
  • 21. Masin D. (2005) A hypoplastic constitutive model for clays, Int. J. Numer. and Anal. Meths. In Geomech., 19 (4), 311–336.
  • 22. Masin D. and Herle I. (2007) Improvement of a hypoplastic model to predict clay behaviour under undrained conditions, Acta Geotech. (in press).
  • 23. Mühlhaus H.-B. (1990) Continuum models for layered and blocky rock. In: Comprehensive Rock Engineering (J. A. Hudson, Ch. Fairhurst, editors), Pergamon, 2, 209–231.
  • 24. Niemunis A. and Herle I. (1997) Hypoplastic model for cohesionless soils with elastic strain range, Mechanics of Cohesive-Frictional Materials, 2 (4), 279–299.
  • 25. Niemunis A. (2003) Extended hypoplastic models for soils, Habilitation Monography, Gdansk University of Technology.
  • 26. Niemunis A., Wichtmann T., Petryna Y. and Triantafyllidis T. (2005) Stochastic modeling of settlements due to cyclic loading for soil-structure interaction. In: Proc. Int. Conf. Structural Damage and Lifetime Assessment, Rome.
  • 27. Nûbel K. (2002) Experimental and numerical investigation of shear localisation in granular materials, Publication Series of the Institute of Soil and Rock Mechanics, University Karlsruhe, 62.
  • 28. Nûbel K. and Huang W. X. (2004) A study of localized deformation pattern in granular media, Computer Methods in Applied Mechanics and Engineering, 193 (27–29), 2719–2743.
  • 29. Oda M. (1993) Micro-fabric and couple stress in shear bands of granular materials. In: Powders and Grains (C. Thornton, editor), Rotterdam, Balkema, 161–167.
  • 30. Pasternak E. and M¨uhlhaus H.-B. (2001) Cosserat continuum modelling of granulate materials. In: Computational Mechanics – New Frontiers for New Millennium (eds.: Valliappan S. and Khalili N.), Elsevier Science, 1189–1194.
  • 31. Rondon H. A., Wichtmann T., Triantafyllidis T. and Lizcano A. (2007) Hypoplastic material constants for a well-graded granular material for base and subbase layers of flexible pavements, Acta Geotechnica, 2 (2), 113–126.
  • 32. Schäfer H. (1962) Versuch einer Elastizit¨atstheorie des zweidimensionalen ebenen Cosserat-Kontinuums. Miszellaneen der Angewandten Mechanik, Festschrift Tolmien W., Berlin, Akademie-Verlag.
  • 33. Sheppard A., Knackstedtr M., Senden T. and Saadatfar M. (2006) Analysis of granular materials using X-ray micro-CT, Proc. 20th Canberra International Summer School and Workshop on Granular Material, 53–53.
  • 34. Steenfelt J. S. (1979) Scale effect on bearing capacity factor, Report of the Danish Geotechnical Institute, Copenhagen.
  • 35. Tamagnini C., Viggiani C. and Chambon R. (2000) A review of two different approaches to hypoplasticity. In: Constitutive Modeling of Granular Materials (D. Kolymbas, ed.), Heidelberg, Springer, 107–145.
  • 36. Tatsuoka F., Okahara M., Tanaka T., Tani K., Morimoto T. and Siddiquee M. S. A. (1991) Progressive failure and particle size effect in bearing capacity of footing on sand, Proc. of the ASCE Geotechnical Engineering Congress, 27 (2), 788–802.
  • 37. Tatsuoka F., Goto S., Tanaka T., Tani K. and Kimura Y. (1997) Particle size effects on bearing capacity of footing on granular material. In: Deformation and Progressive Failure in Geomechanics (eds.: Asaoka, T. Adachi and F. Oka), Pergamon, 133–138.
  • 38. Tejchman J. and Wu W. (1993) Numerical study on shear band patterning in a Cosserat continuum, Acta Mechanica, 99, 61–74.
  • 39. Tejchman J. and Bauer E. (1996) Numerical simulation of shear band formation with a polar hypoplastic model, Computers and Geotechnics, 19 (3), 221–244.
  • 40. Tejchman J. and Herle I. (1999) A “class A” prediction of the bearing capacity of plane strain footings on granular material, Soils and Foundations, 39 (5), 47–60.
  • 41. Tejchman J. and Gudehus G. (2001) Shearing of a narrow granular strip with polar quantities, J. Num. and Anal. Methods in Geomechanics, 25, 1–18.
  • 42. Tejchman J. (2004a) FE-simulations of a direct wall shear box test, Soils and Foundations, 44 (4), 67–81.
  • 43. Tejchman J. (2004b) Influence of a characteristic length on shear zone formation in hypoplasticity with different enhancements, Computers and Geotechnics, 31 (8), 595–611.
  • 44. Tejchman J. and Niemunis A. (2006) FE-studies on shear localization in an anisotropic micro-polar hypoplastic granular material, Granular Matter, 8 (3–4), 205–220.
  • 45. Tejchman J., Bauer E. and Wu W. (2007) Effect of texturial anisotropy on shear localization in sand during plane strain compression, Acta Mechanica, 189 (1–4), 23–51.
  • 46. Tejchman J. and Wu W. (2009) FE-investigations of non-coaxiality and stress-dilatancy rule in dilatant granular bodies within micro-polar hypoplasticity, Int. Journal for Numerical and Analytical Methods in Geomechanics, 33 (1), 117–142.
  • 47. Tejchman J. and Górski J. (2008a) Deterministic and statistical size effect during shearing of granular layer within a micro-polar hypoplasticity, Int. Journal for Numerical and Analytical Methods in Geomechanics, 32 (1), 81–107.
  • 48. Tejchman J. and Górski J. (2008b) Computations of size effects in granular bodies within micro-polar hypoplasticity during plane strain compression, Int. J. for Solids and Structures, 45 (6), 1546–1569.
  • 49. Tejchman J. and Wu W. (2009) FE-investigations of shear localization in granular bodies under high shear rate, Granular Matter, doi:10.1007/s10035-009-0128-4.
  • 50. Tejchman J. (2008) FE modeling of shear localization in granular bodies with micro-polar hypoplasticity, Springer (eds.: Borja R. and Wu W.).
  • 51. Tejchman J. and Gorski J. (2009) Modeling of bearing capacity of footings on sand within stochastic micro-polar hypoplasticity, Intern. Journal for Numerical and Analytical Methods in Geomechanics, 2009 (submitted).
  • 52. Walukiewicz H., Bielewicz E. and Górski J. (1997) Simulation of nonhomogeneous random fields for structural applications, Computers and Structures, 64 (1–4), 491–498.
  • 53. Wang C. C. (1970) A new representation theorem for isotropic functions, J. Rat. Mech. Anal., 36, 166–223.
  • 54. Vanmarcke E.-H. (1983) Random Fields: Analysis and Synthesis, Cambridge, MIT Press.
  • 55. Weibull W. (1951) A statistical theory of the strength of materials, Journal of Applied Mechanics, 18 (9), 293–297.
  • 56. Weifner T. and Kolymbas D. (2008) Review of two hypoplastic equations for clay considering axisymmetric element deformations, Comp. Geotech., doi:10.1016/j.compgeo.2007.12.001.
  • 57. Wernick E. (1978) Tragf¨ahigkeit zylindrischer Anker in Sand unter besonderer Ber¨ucksichtigung des Dilatanzverhaltens, Publication Series of the Institute for Rock and Soil Mechanics, University Karlsruhe 75.
  • 58. von Wolffersdorff P. A. (1996) A hypoplastic relation for granular materials with a predefined limit state surface, Mechanics Cohesive-Frictional Materials, 1 (3), 251–271.
  • 59. Wu W. and Kolymbas D. (2000) Hypoplasticity then and now. In: Constitutive Modeling of Granular Materials (ed. Kolymbas D.), Heidelberg, Springer, 57–105.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT8-0012-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.