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Abstract
The flux of momentum generated by an incident wave field, commonly known as the radiation
stress, plays an important role in near-shore water circulation. Many researchers use the
concept of radiation stress in the calculation of cross-shore and long-shore circulation. In
this paper, the traditional concept is extended to the case of vertical variation of radiation
stress, and analitycal expressions for the vertical profile of radiation stress are derived. The
distributions of the wave-induced radiation stress tensor with depth are studied by linear
wave theory. The application of radiation stress with vertical variation is expected to play
an important role in further studies of the near-shore system.

Information regarding the vertical distribution of the radiation stress components (Sxx ,
Syy and Sxy) resulting from obliquely incident, shoaling waves is provided. The results show
that the vertical variations of the wave-induced radiation stress tensor are significant as
regards of wave propagation.
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1. Introduction

The near-shore coastal region is a dynamic and complex system. The long-shore and
cross-shore currents formed by incident waves, along with the coupling that takes
place between the incident wave field and the currents, generate the near-shore
water circulation. The concept of radiation stress is usually used to identify the
appropriate forcing mechanisms that initiate cross-shore and long-shore circulation.
Usually, the two-dimensional case is considered, and the depth-integrated value of
radiation stress is taken into account.

The term “radiation stress” describes the excess flow of momentum due to prop-
agating water waves (Longuet-Higgins and Stewart 1964, Longuet-Higgins 1970).
Radiation stresses are the forces per unit area that arise because of the excess
momentum flux due to the presence of waves. Also, the resulting analytical expres-
sions presented in Longuet-Higgins and Stewart (1964) are depth-integrated quan-
tities that ignore potentially important vertical information. While depth-averaged
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near-shore current models are still widely used today, advancements in technology
have permitted the adaptation of three-dimensional modeling techniques to the study
of flow properties of complex near-shore circulation systems.

Traditionally, linear wave theory is used to approximate radiation stresses. This
theory is generally sufficient to explain such phenomena as the wave set-down and
set-up, and the generation of long-shore and cross-shore currents.

The simulation of near-shore currents with three-dimensional numerical models
is gaining popularity (e.g. Tsanis et al 1996, Ezer and Mellor 2004, Blumberg and
Mellor 1987). Recently, analytical expressions describing the vertical structure of
radiation stress components have appeared in literature (see Mellor 2003, Xia et al
2004, Grusza 2007).

Considering the importance of the vertical structure of radiation stress, in the
present paper the concept of traditional radiation stress is extended to its vertical
profile. A simple method for calculating vertical distribution of radiation stress
components (Sxx, Sxy and Syy) resulting from obliquely incident, linear shoaling
waves is proposed. The main idea is the same as that used by Dolata and Rosenthal
(1984), but the accurate expression for a pressure function is used. This feature
distinguishes results of the work presented here from the expressions obtained by
Mellor (2003).

2. Theoretical Description

The calculation of depth-dependent formulae of the radiation stress will be
carried out by employing the theory of small-amplitude waves. It is assumed that
the x axis is located at mean water level (MWL), with its positive direction coin-
ciding with the wave propagation direction; the vertical z-axis points upwards, and
h denotes the water depth below MWL. The surface elevation and horizontal and
vertical velocities are given by:

η = a cos (kx − ωt) ,

u = aω cos (kx − ωt)
cosh (k (h + z))

sinh(kh)
,

w = aω sin (kx − ωt)
cosh (k (h + z))

sinh(kh)
,

(1)

where t is time, u and w are the velocity components in x and z directions, respec-
tively; k = 2π/L is the wavenumber, L is the wavelength; ω = 2π/T is the angular
frequency, T is the period; a is the wave amplitude, and ρ is the density of water.
The radiation stress defined by Longuet-Higgins and Stewart (1964) is expressed
as:
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Sxx =

η∫
−h

(
p + ρu2)dz −

0∫
−h

(p0)dz, (2)

where p is pressure and the overbar denotes an operation of averaging over a wave
period defined by

η∫
−h

(
p + ρu2)dz =

1
T

T∫
0


η∫
−h

(
p + ρu2

)
dz

dt. (3)

If a particle of water at rest is located at the depth of z = z0, then at time t it
has a position on the line z0 +W (x, z0, t), where W is a function given by

W =
a sinh (k(z0 + h)) cos (kx − ωt)

sinh (kh)
. (4)

We consider the excess of flow of momentum due to propagating water waves of
the lower layer of water, which at rest is described by the inequalities −h < z < zb.
In accordance with Eq. (2), we have

Pxx(zb) =

zb+W (x,zb,t)∫
−h

(
p + ρu2)dz −

zb∫
−h

(p0)dz. (5)

If we consider the entire layer of liquid, we obtain exactly the same expression as
Lonquet-Higgins and Stewart (1964). We define the function Sxx(z) as the derivative
of the function Pxx(z):

Sxx(z) =
∂Pxx(z)
∂z

. (6)

We recall that “radiation stress”, as defined by Longuet-Higgins and Stewart (1964)
is actually not a “stress” (force per unit area) but a depth integrated stress, the density
(vertical profile) Sxx(z) defined by Eq. (6) is however a “true” radiation stress. The
dimension of the density of radiation stress Sxx(z) has indeed the dimension of
the stress (force per unit area). Comparison of the expressions of (2), (5) and (6),
as well as their physical meanings, shows that Sxx(z) is a natural extension of the
traditional radiation stress. Integration of the density radiation stress from −h to zb
immediately gives Eq. (5). The physical meaning is as follows: the radiation stress
of a thin layer of fluid, at rest, described by the inequalities z0 < z < z0 + dz, is
associated with momentum transport of the same particles of water, but their actual
locations are taken into account (Fig. 1). The concept of calculating the function
of the density of the radiation stress is similar to that used by Xia et al (2004), but
there is a significant difference between the two methods: in the present work the
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Fig. 1. Physical meanig of the radiation stress – positions of particles which at rest have
postions at the line z = z0

real locations of water particles are taken into account. Based on the method used
by Xia et al (2004), we use the expression for the function of pressure, in which
all nonlinear terms are considered. The wave movement satisfies the general fluid
dynamics equations, and the Euler equation of motion in the vertical direction has
the form:

ρ

(
∂w

∂t
+
∂w

∂x
u +
∂w

∂z
w

)
+
∂p
∂z
+ g = 0. (7)

Integrating this equation with respect to the vertical variable z from z to η, and
using the continuity equation, one obtains:

η∫
z

ρ

(
∂w

∂t
+
∂w

∂x
u
)
dz +

1
2

(
w2(η) − w2(z)

)
+ p(η) − p(z) + g (η − z) = 0. (8)

From the above equation we can determine the pressure function and, because the
pressure at the free surface is equal to zero, we obtain

p(z) =
1
2

(
w2(η) − w2(z)

)
+ g (η − z) +

η∫
z

ρ

(
∂w

∂t
+
∂w

∂x
u
)
dz. (9)

We notice that the integral in the above equation can be calculated analitically.
Using equation (1), this integral is expressed as:

I1 =

η∫
z

ρ
∂w

∂t
dz =

ρaω2 cosh(k(z + h))
k sinh(kh)

cos(kx − ωt)+

−
ρaω2 cosh(k(η + h))

k sinh(kh)
cos(kx − ωt),

(10)
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and

I2 =

η∫
z

ρ
∂w

∂x
udz =

1
4
ρa2ω2 cosh(2k (η + h))

sinh2(kh)
cos2(kx − ωt)+

−
1
4
ρa2ω2 cosh(2k (z + h))

sinh2(kh)
cos2(kx − ωt).

(11)

Using equations (9), (10) and (11), we can calculate expression (9)

Pxx(zb) =
ρa2g

16 sinh2(kh) cosh(kh)
×

× (2 cosh(kh) − 3 cosh(k (h + 2zb)) + cosh(k (3 h + 2zb))+

+8k (h + zb) sinh(kh)) + O
(
a3

)
.

(12)

By setting zb = 0 in the above equation, we obtain the integrated radiation stress.
In this case Eq. (12), this simplifies to the following relation

Pxx(0) =
ρA2 g

4

(
1 +

4kh
sinh(2 h k)

)
. (13)

Of course, the above expression is consistent with the result obtained by
Longuet-Higgins and Stewart (1964). It can be seen again that the proposed defi-
nition is the extension of traditional radiation stress. Differentiation of the function
Pxx(z) with respect to the vertical co-ordinate yields:

Sxx(z) =
ρA2 gk

8 sinh2(kh) cosh(kh)
×

(4 sinh(kh) − 3 sinh(k(2z + h)) + sinh(k(2z + 3h))) .
(14)

Fig. 2 shows the vertical variation of Sxx(z) for different values of the parameter
kh. It is seen that when kh is large, the radiation stress reaches its maximum value at
the free surface and decreases rapidly with depth. This agrees with the attenuation
rule for deep-water waves: velocity and the dynamic pressure decrease with depth.
For small values of kh, the density of radiation stress is at its maximum at the
bottom. This variability of radiation stress is similar to that obtained by Xia et
al (2004). However, there are small differences: in contrast to the results obtained
by the latter authors, values of the radiation stress are always positive. The same
method can be followed to calculate the radiation stress in the normal direction. In
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Fig. 2. Vertical variation of of the radiation stress density Sxx(z) for different values of the
parameter kh

this case the excess of the flow of momentum due to the propagating water waves
of the lower water layer results in:

Pyy(zb) =

zb+W (x,zb,t)∫
−h

p)dz −

0∫
−h

(p0)dz, (15)

where, as before, W (x, zb, t) denotes the vertical displacement at the level z = zb.
The final result of calculations can be simplified to:

Pyy(z) =
1
8

ρa2g

sinh2(kh) cosh(kh)
×

×(cosh(kh) − cosh(k(h + 2z)) + 2k(h + z) sinh(kh)),

(16)

and the corresponding density of the radiation stress is given by

Syy(z) =
ρa2gk

4 sinh2(kh) cosh(kh)
(sinh(hk) − sinh(k(h + 2z))). (17)

The vertical variation of Syy(z) is shown in Fig. 3. For all values of kh the density of
the radiation stress is at its maximum at the bottom. For shorter waves, the values
of Syy(z) are small. When there is an angle θ between the x axis and the propagation
direction of the wave, we can use the general rule of tensor transformation. Hence,
the density of the radiation stress can be written as:

Sxx(z) =
1
2

(Srr + Snn) +
1
2

(Srr − Snn) cos(2θ) =

=
a2gk

8 cosh(kh) sinh(kh)
(cos(2θ) + 3) +

a2gk
16 sinh2(kh) cosh(kh)

×

×
(
2 cos2(θ) sinh(k(3h + 2z)) − (cos(2θ) + 5) sinh(k(h + 2z))

)
,

(18)
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Fig. 3. Vertical variation of the radiation stress density Syy(z) for different values of the
parameter kh

Syy(z) =
1
2

(Srr + Snn) −
1
2

(Srr − Snn) cos(2θ) =

=
a2gk

16 cosh(kh) sinh(kh)
(6 − cos(2θ)) +

a2gk
16 sinh2(kh) cosh(kh)

×

×
(
2 sinh(k(3h + 2z)) sin2(θ)) + (cos(2θ)) − 5) sinh(k(h + 2z))

)
,

(19)

Sxy(z) = Syx(z) =
1
2

(Srr − Snn) sin(2θ) =

=
a2gk

2 sinh(2kh)
cosh2(k(h + z)) sin(2θ),

(20)

where Srr(z) and Snn(z) are components of the radiation stress in the direction of the
wave propagation and normal direction given by the right-hand side of equations
(15) and (18), respectively.

2.1. Forces Induced by Radiation Stress

More interesting are the vertical variations in the forces resulting from radiation
stress. Wave induced forces are dependent on the radiation stress gradients:

Fx =
∂Sxy

∂y
+
∂Sxx

∂x
, (21)

Fy =
∂Sxy

∂x
+
∂Syy
∂y
. (22)

We consider the simple situation in which the slope of the bottom is gentle and
the isobaths are parallel to the shore line x = 0. Let us assume that k0, a0 and α0
denote the wavenumber, wave amplitude and the angle between a wave crest and
a local isobath in deep water, respectively.
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In such a situation, at each point the local wave number k, local amplitude a
and the angle α between a wave crest and a local isobath can be determined from
the following relation:

ω2 = g k(x) tanh(h(x) k(x)). (23)

In the situation considered here of long-crested, harmonic waves approaching
a straight beach (with pararell bottom contours), the direction of the wave is gov-
erned by the well-known Snell’s law, by which, along the wave ray (the orthogonal
to the wave crests) the relation holds

k sin(θ) = C0, (24)

where C0 is a constant dependent on the wavelength and the direction of wave
propagation in deep water. Additionally,

a = a0

√
Cg0
Cg

√
cos(θ0)
cos(θ)

, (25)

where θ0, Cg0 and a0 denote the angle between a wave crest and a local isobath,
group velocity, and amplitude in deep water, respectively. The coefficients

√
Cg0/Cg

and
√

cos(θ0)/cos(θ) are named the shoaling coefficient and refraction factor.
In order to calculate the wave induced forces in the water of depth h, for a given

frequency, the amplidute and the angle α0 between the x axis and the propagation
direction of the wave, the following methodology has been applied:

1. From dispersion relation (23) the local wave number is calculated.
2. From Snell’s law (24) the angle α between the propagation direction of the wave

and the local isobath is determined.
3. From relation (25) the value of the wave amplitude is calculated.
4. The values of the radiation stress at two different nearby points are calculated.
5. Using a finite difference scheme and equations (21)–(22), the functions of

wave-induced forces are obtained. These function are proportional to the density
of total energy E0 and bottom slope h′(x), and can be expressed as:

Fx = −E0h′(x)Wx(α0, k0, h),

Fx = −E0h′(x)Wy(α0, k0, h),
(26)

where α0 and k0 denote the angle and wavenumber in deep water, respectively.

The vertical variation of Wx for non-breaking waves is presented in Fig. 4 for
the following wave parameters: the angle α0 = π/4 and the wave number k0 = 1/4.
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Fig. 4. Vertical variation of Wx . The lines (from left to right) denote values of Wx at depth
5, 4, 3, 2, 1.5 and 1 m, respectively

Fig. 5. Vertical variation of Wy. The lines (from left to right) denote values of Wy at depth
5, 4, 3, 2, 1.5 and 1 m, respectively

The variations of the wave-induced forces in the x-direction are almost linear.
In each case, the force reaches its maximum at the botttom and the minimum at
the free surface. The slope of the curve changes rapidly in the shallow water zone.

The wave induced force in the y-direction is smaller by one order than along
the shore. The vertical variation of Wy is shown in Fig. 5.

As in the previous case, the force reaches its minimum at the free surface,
though its vertical variation is very small.

3. A Note on Radiation Stress for Nonlinear Waves

We now consider the case in which nonlinear waves are taken into account. In
place of equation (1) we should use the following expressions:

u = aω
cosh (k (h + z))

sinh(hk)
cos (kx − ωt) + a2wu(z) cos (2kx − 2ωt) + O(a3), (27)

w = aω sin (kx − ωt)
cosh (k (h + z))

sinh(hk)
+ a2ww(z) sin (2kx − 2ωt) + O(a3), (28)
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η = a cos (kx − ωt) + a2wη cos (2kx − 2ωt) + O(a3), (29)

where the functions wu(z), ww(z) and the expression for wη can be found in, e.g.,
Wehausen and Laitone (1960). For our purposes the detailed expressions are not
needed. We should also modify the epression for the function W (x, y, t) defined by
Eq. (4):

W =
a sinh (k(z0 + h)) cos (kx − ωt)

sinh (kh)
+ a2wW (z) cos (2kx − 2ωt) + O(a3). (30)

It is easy to notice that the non-linear terms do not infuence the final result followed
from the term u2 in Eq. (2). Similarly, the pressure function defined by (9) has a
general form and the non-linear terms do not affect the radiation stress. Hence,
taking unto consideration the nin-linear terms does not changethe results, obtained
in Section 2.

4. Conclusion

In this paper, the original concept of radiation stress in water waves has been
extended to describe its vertical variation. A clear definition of density of radiation
stress and the simple calculation formulae for the vertical profile of radiation stress
are obtained. These can be used successfully in the analysis of 3-D wave-current
coupling effects. The calculation shows that:
1. The long-shore force is greater by one order of magnitude than the cross-shore

force.
2. The long-shore force can be assumed to be independent of the vertical

co-ordinate.
3. The cross-shore force reaches its maximum value at the bottom.
4. In deeper water the long-shore and cross-shore forces are small and can be

assumed to be independent of the vertical co-ordinate.
5. The obtained expressions for vertical variations of the radiation stress hold true

for non-linear waves as well.
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