PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A simple vehicle classification framework for wireless audio-sensor networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Vehicle tracking is one of the important applications of wireless sensor networks. We consider an aspect of tracking: the classification of targets based on the acoustic signals produced by vehicles. In this paper, we present a naive classifier and simple distributed schemes for vehicle classification based on the features extracted from the acoustic signals. We demonstrate a novel way of using Aura matrices to create a new feature derived from the power spectral density (PSD) of a signal, which performs at par with other existing features. To benefit from the distributed environment of the sensor networks we also propose efficient dynamic acoustic features that are low on dimension, yet effective for classification. An experimental study has been conducted using real acoustic signals of different vehicles in an urban setting. Our proposed schemes using a na¨ive classifier achieved highly accurate results in classifying different vehicles into two classes. Communication and computational costs were also computed to capture their trade-off with the classification quality.
Rocznik
Tom
Strony
43--50
Opis fizyczny
Bibliogr.16 poz., rys.
Twórcy
autor
autor
Bibliografia
  • [1] S. Basagni, “Distributed clustering for ad hoc networks”, in Proc. 1999 Int. Symp. Parall. Archit., Algor. Netw. ISPAN, Fremantle, Australia, 1999.
  • [2] R. Braunlin, R. M. Jensen, and M. A. Gallo, “Acoustic target detection, tracking, classification, and location in a multiple-target environment”, in Proc. SPIE Conf. Peace Wart. Appl. Tech. Iss. Unatt. Ground Sens., Orlando, USA, 1997, vol. 3081, pp. 57–66.
  • [3] J. Ding, S.-Y. Cheung, C.-W. Tan, and P. Varaiya, “Signal processing of sensor node data for vehicle detection”, in Seventh Int. IEEE Conf. Intell. Transp. Syst., Washington, USA, 2004.
  • [4] M. Duarte and Y.-H. Hu, “Vehicle classification in distributed sensor networks”, J. Parall. Distrib. Comp., vol. 64, no. 7, pp. 826–838, 2004.
  • [5] R. Duda, P. Hart, and D. Stork, Pattern Classification, 2nd ed. New York: Wiley, 2001.
  • [6] I.M. Elfadel and R.W. Pickard, “Gibbs random fields, cooccurences, and texture modeling”, IEEE Trans. Patt. Anal. Mach. Intell., vol. 16, no. 1, pp. 24–37, 1994.
  • [7] L. German, “Signal recognition: both components of the short time Fourier transform vs. power spectral density”, Patt. Anal. Appl., vol. 6, no. 2, pp. 91–96, 2003.
  • [8] D. Goldin and P. Kanellakis, “On similarity queries for timeseries data: constraint specification and implementations”, in Int. Conf. Princ. Pract. Constr. Programm., Marseille, France, 1995, pp. 137–153.
  • [9] D. Li, K. D. Wong, Y. H. Hu, and A. M. Sayeed, “Detection, classification, and tracking of targets in distributed sensor networks”, IEEE Sig. Proces. Mag., vol. 19, no. 2, pp. 17–30, 2002.
  • [10] S. G. Mallat, “A theory for multiresolution signal decomposition: a wavelet representation”, IEEE Trans. Patt. Anal. Mach. Intell., vol. 11, no. 7, pp. 674–693, 1989.
  • [11] B. Malhotra, I. Nikolaidis, and J. Harms, “Distributed classification of acoustic targets in wireless audio-sensor networks”, Comput. Netw. (special issue on Wireless Multimedia Sensor Networks), 2007.
  • [12] G. Succi and T. K. Pedersen, “Acoustic target tracking and target identification – recent results”, in Proc. SPIE Conf. Unatt. Ground Sens. Technol. Appl., Orlando, USA, 1999, vol. 3713, pp. 10–21.
  • [13] W. H. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energyefficient communication protocol for wireless microsensor networks”, in Proc. Hawaii Int. Conf. Syst. Sci., Maui, Hawaii, USA, 2000, pp. 1–10.
  • [14] H. Wu, M. Siegel, and P. Khosla, “Vehicle sound signature recognition by frequency vector principal component analysis”, IEEE Trans. Instrum. Measur., vol. 48, no. 5, pp. 1005–1009, 1999.
  • [15] X. Qin and Y.-H. Yang, “Similarity measure and learning with gray level Aura matrices (GLAM) for texture image retrieval”, in Proc. 2004 IEEE Comput. Soc. Conf. Comput. Vis. Patt. Recog. CVPR, Washington, USA, 2004.
  • [16] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for reduced CPU energy”, in Proc. 1st USENIX Symp. Oper. Syst. Des. Implem., Monterey, USA, 1994, pp. 13–23.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT8-0010-0030
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.