Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper examines the result of the experimental research on the ultimatum games through simulation analysis. To do so, we develop agent-based simulation system imitating the behavior of human subjects in the laboratory experiment by implementing a learning mechanism involving a concept of fairness. In our agent-based simulation system, mechanisms of decision making and learning are constructed on the basis of neural networks and genetic algorithms.
Słowa kluczowe
Rocznik
Tom
Strony
36--44
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
autor
autor
- Department of Artificial Complex Systems Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamayama, Higashi-Hiroshima, 739-8527, Japan, hayashida@hiroshima-u.ac.jp
Bibliografia
- [1] K. Abbink, G. E. Bolton, A. Sadrieh, and F.-F. Tang, “Adaptive learning versus punishment in ultimatum bargaining”, Games Econom. Behav., vol. 37, pp. 1–25, 2001.
- [2] G. E. Bolton, “A comparative model of bargaining: theory and evidence”, Amer. Econom. Rev., vol. 81, pp. 1096–1136, 1991.
- [3] G. E. Bolton and A. Ockenfels, “ERC: a theory of equity, reciprocity, and competition”, Amer. Econom. Rev., vol. 90, pp. 166–193, 2000.
- [4] G. E. Bolton and R. Zwick, “Anonymity versus punishment in ultimatum bargaining”, Game Econom. Behav., vol. 10, pp. 95–121, 1995.
- [5] M. Costa-Gomes and K. G. Zauner, “Ultimatum bargaining behavior in Israel, Japan, Slovenia, and the United States: a social utility analysis”, Game Econom. Behav., vol. 34, pp. 238–269, 2001.
- [6] J. Duffy and N. Feltovich, “Does observation of others affect learning in strategic envirnments? An experimental study”, Int. J. Game Theory, vol. 28, pp. 131–140, 1999.
- [7] E. Fehr and K. M. Schmidt, “A theory of fairness, competition and cooperation”, Q. J. Econom., vol. 114, pp. 817–868, 1999.
- [8] R. Forsythe, J. L. Horowitz, N. E. Savin, and M. Sefton, “Fairness in simple bargaining experiments”, Games Econom. Behav., vol. 6, pp. 347–369, 1994.
- [9] J. Gale, K. G. Binmore, and L. Samuelson, “Learning to be imperfect: the ultimatum game”, Games Econom. Behav., vol. 8, pp. 56–90, 1995.
- [10] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Reading: Addison Wesley, 1989.
- [11] W. G¨uth, R. Schmittberger, and B. Schwarze, “An experimental analysis of ultimatum bargaining”, J. Econom. Behav. Organ., vol. 3, pp. 367–388, 1982.
- [12] M. H. Hassoun, Fundamentals of Artificial Neural Networks. Cambridge: The MIT Press, 1995.
- [13] E. Hoffman, K. A. McCabe, K. Shachat, and V. L. Smith, “Preferences, property rights, and anonymity in bargaining games”, Games Econom. Behav., vol. 7, pp. 346–380, 1994.
- [14] E. Hoffman, K. A. McCabe, and V. L. Smith, “On expectations and the monetary stakes in ultimatum games”, Int. J. Game Theory, vol. 25, pp. 289–301, 1996.
- [15] D. Kahneman, J. L. Knetsch, and R. H. Thaler, “Fairness and the assumptions of economics”, J. Bus., vol. 59, pp. S285–S300, 1986.
- [16] R. D. McKelvey and T. R. Palfrey, “Quantal response equilibria for normal form games”, Games Econom. Behav., vol. 10, pp. 6–38, 1995.
- [17] J. Neelin, H. Sonnenschein, and M. Spiegel, “A further test of noncooperative bargaining theory: comment”, Amer. Econom. Rev., vol. 78, pp. 824–836, 1988.
- [18] M. Rabin, “Incorporating fairness into game theory and economics”, Amer. Econom. Rev., vol. 83, pp. 1281–1302, 1993.
- [19] A. E. Roth and I. Erev, “Learning in extensive form games: experimental data and simple dynamic models in the intermediate term”, Games Econom. Behav., vol. 8, pp. 163–212, 1995.
- [20] A. Roth, V. Prasnikar, M. Okuno-Fujiwara, and S. Zamir, “Bargaining and market behavior in Jerusalem, Ljubljana, Pittsburgh, and Tokyo: an experimental study”, Amer. Econom. Rev., vol. 81, pp. 1068–1095, 1991.
- [21] E. Weg and V. Smith, “On the failure to induce meager offers in ultimatum game”, J. Econom. Psychol., vol. 14, pp. 17–32, 1993.
- [22] K.-O. Yi, “Quantal-response equilibrium models of the ultimatum bargaining game”, Games Econom. Behav., vol. 51, pp. 324–348, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT8-0010-0013