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Abstract—This paper examines the result of the experimental

research on the ultimatum games through simulation analysis.

To do so, we develop agent-based simulation system imitating

the behavior of human subjects in the laboratory experiment

by implementing a learning mechanism involving a concept of

fairness. In our agent-based simulation system, mechanisms

of decision making and learning are constructed on the basis

of neural networks and genetic algorithms.
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1. Introduction

In this paper, we develop a multi-agent simulation system

for analyzing behavior of players in the ultimatum games.

In the subgame perfect equilibrium of the ultimatum game,

player 1 who is a proposer obtains almost all the payoff

which is divided between players 1 and 2, and player 2

accepts the offer of player 1. It is known from the results

of the experimental investigations of the past that the sub-

game perfect equilibrium does not accurately forecast the

ultimatum play, and the payoff is divided almost equally.

A diversified range of experiments have been accumulated

in order to examine why outcomes of the games deviate

from the subgame perfect equilibrium [4, 8, 11, 13, 14,

15, 17, 20, 21], where the following issues are focused

on: fairness of players, the number of rounds of the game,

difference in nations or races, the right to be player 1, the

structural power of player 1, anonymity of play, punishment

for unfair proposals, magnitude of payoff, and so forth.

Bolton [2] tries to explain the experimental results by using

a utility function of a player which is influenced not only

by a payoff of the player but also by a payoff of the op-

ponent; the utility function is defined by the payoff of the

player and the ratio of the payoff of the player to that of the

opponent. Moreover, Bolton and Ockenfels [3] extend this

model to games with incomplete information. Rabin [18]

define a fairness equilibrium by using a utility function of

the payoff of self and the kindness to the opponent, and

consider some economic examples. Fehr and Schmidt [7]

consider fairness, competition and cooperation in the eco-

nomic environment by using a utility function defined by

the payoff of self and a difference between the payoff of self

and that of the opponent. Costa-Gomes and Zauner [5] at-

tempt to explain the experimental data of Roth et al. [20]

by a utility function with the payoffs of two players and

a random disturbance term.

Concerning approaches without any utility function, Roth

and Erev [19] propose a simple learning model based on

reinforcement learning. Gale et al. [9] show that replica-

tor dynamics leads not to the subgame perfect equilibrium,

but to the Nash equilibria; they suggest that researchers

should give attention to not always the subgame perfect

equilibrium but also the Nash equilibria in evaluating the

experimental data. Incorporating the quantal response equi-

libria (QRE) model [16], Yi [22] attempts to explain the

experimental result of the ultimatum games.

Abbink et al. [1] compare an approach based on the utility

function with an approach based on adaptive learning; they

argue the abilities and limitations of both approaches. From

these research results, it seems to be desirable to incorpo-

rate both concepts of fairness and learning for modeling

the behavior of players in the ultimatum game. In this pa-

per, we develop a simulation system with artificial adaptive

agents which have a decision making and learning mech-

anism based on neural networks (e.g., [12]) and a genetic

algorithm (e.g., [10]). By employing the utility function

proposed by Fehr and Schmidt [7] as a fitness function of

the genetic algorithm, fairness is incorporated in the learn-

ing mechanism of the artificial agents. In our system for

simulation of the ultimatum games, an action of an agent is

determined by a vector of outputs from a nonlinear function

with several input data that agents can know after playing

a stage game; this decision mechanism is implemented by

a neural network. The artificial agents with chromosomes

consisting of the synaptic weights and thresholds character-

izing the neural network are evolved so as to obtain larger

payoffs through a genetic algorithm, and then this learning

mechanism develops agents with better performance.

To imitate the behavior of human subjects in a laboratory

experiment and examine the result of the experiment by

using the agent-based simulation system, we use the data

from the experiment by Roth et al. [20], and identify the

standard set of the parameters in the utility function in-

corporating fairness by Fehr and Schmidt [7]. Moreover,

by varying the values of the parameters, we evaluate the

effect of each individual parameter on the behavior of the

artificial agents.

The organization of this paper is as follows. In Section 2,

we describe the ultimatum game and briefly review the ex-

perimental result of the ultimatum game by Roth et al. [20].

Section 3 is devoted to describing the agent-based simula-

tion system with the learning mechanism and the utility

function incorporating fairness. In Section 4, we exam-
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ine the results of the simulations; finally in Section 5, we

give a summary of the simulations and some concluding

remarks.

2. The ultimatum game

We deal with an ultimatum game in which two players di-

vide $10. In this game, player 1 who is the first mover

makes an offer (x1,x2 = 10 − x1), x2 ∈ {1, . . . ,10}, and

player 2 who is the second mover accepts or rejects the

offer (x1,x2); if player 2 accepts, players 1 and 2 obtain

π1 = x1 and π2 = x2, respectively; otherwise they obtain

nothing, π1 = π2 = 0. It is noted that the offer of 0 by

player 1 is removed from a list of possible offers; this set-

ting is also used in the ultimatum game in [6]. In Fig. 1,

a game tree of the ultimatum game is depicted. Because

player 2’s payoff by acceptance is larger than that by re-

jection in any of player 2’s nodes, the subgame perfect

equilibrium is player 1’s offer of ($9,$1) and acceptance

of player 2; the pair of the equilibrium payoffs is ($9,$1).

Fig. 1. Game tree of the ultimatum game.

We review and summarize the result of the experiment by

Roth et al. [20], where the experiment about bargaining

and market behavior is conducted in four countries: Israel,

Japan, the United State, and Yugoslavia. As a practical

matter, in the experiment $10 is represented as 1000 to-

kens, and all offers are made in multiples of 5 tokens.

There are three sessions of the ultimatum game; in each

session, about 20 subjects are recruited and the game is

played 10 rounds; a pair of players are randomly matched

at each round. Because any offer is available only in in-

crements of $1 in our simulation, we use the discretized

data of the experiment shown in [5] and we take the av-

erage after pooling all the data of the four countries. The

result of the experiment compatible with the setting of our

simulation is shown in Fig. 2, where the data of $1 cor-

respond to offers from 0 token to 150 tokens, the data

of $2 correspond to offers from 155 tokens to 250 tokens,

and so forth, because the minimum offer is set to $1 in our

setting.

Fig. 2. Summary of the result of the experiment with human

subjects.

As can be seen in Fig. 2, only about 4% of all the offers

correspond to the subgame perfect equilibrium and the rate

of acceptance for the corresponding offers is 31%. This

fact is not consistent with the subgame perfect equilibrium

prediction. The offers of $4 or $5 account for 68% of

all the offers, and therefore player 1 seems to be making

relatively fair offers. The rate of acceptance by player 2 for

offers larger than or equal to $4 is over 75%.

Although any offers by player 1 a quota of player 2 of

which is smaller than or equal to $1 brings a positive pay-

off to player 2, player 2 rejects it at the rate of 70%. This

behavior can be interpreted as punishment for unfair pro-

posals by player 1. By using utility functions defined by

not only the payoff of self but also the payoff of the

opponent, explanations of such behavior have been at-

tempted [2, 3, 5, 7, 18].

3. Agent-based simulation model

In this paper, because it is supposed that human behavior is

adaptive, we employ a simulation model which is a natural

framework to implement the adaptive behavior of individ-

uals. In our simulation model, each agent has a decision

making mechanism built by a neural network (e.g., [12])

and a learning mechanism based on a genetic algorithm

(e.g., [10]).

3.1. Decision making by a neural network

An agent corresponds to a neural network which is charac-

terized by synaptic weights between two nodes in the neural

network and thresholds which are parameters for the output

function of nodes. Because a structure of neural networks

is determined by the number of layers and the number of

nodes in each layer, an agent is prescribed by the fixed

number of parameters if these numbers are fixed. Forming

a string consisting of these parameters which is identified
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with an artificial agent, we think of the string as a chro-

mosome of the agent in an artificial genetic system of our

simulation model. In our simulation model for analyzing

behavior of players in the ultimatum games, two types of

agents are required. The first one which is called agent 1

corresponds to player 1 who makes an offer to player 2; the

second one which is called agent 2 corresponds to player 2

who accepts or rejects the offer by player 1.

3.1.1. Decision making of agent 1

The structure of a neural network of agent 1 is depicted

in the diagram of Fig. 3a. Agent 1 makes an offer corre-

sponding to the largest output among all the ten outputs of

the neural network, where the outputs outs, s = 1, . . . ,10

correspond to from the offer (9,1) to the offer (0,10); the

offer (10− s∗,s∗) with the largest output outs∗ is chosen as

the next offer of agent 1.

Inputs of the neural network for agent 1 is summarized as

follows.

[Input 1] an offer by agent 1 in the last game:

x1 ∈ {9,8, . . . ,0}1 .

[Input 2] a payoff obtained by agent 1 in the last game:

π1 ∈ {9,8, . . . ,0}.

[Input 3] agent 2’s choice between acceptance and rejec-

tion in the last game: y2 ∈ {0, 1}; 0 means re-

jection, and 1 means acceptance.

[Input 4] a payoff obtained by agent 2 in the last game:

π2 ∈ {1,2, . . . ,10}.

[Input 5] the average payoff obtained by agent 1 in the

past all games: π̄1 ∈ [0,9].

[Input 6] the average payoff obtained by agent 2 in the

past all games: π̄2 ∈ [0,10].

[Input 7] the average offer of agent 1 in the past all

games: x̄1 ∈ [0,9].

[Input 8] the average rate of acceptance by agent 2 for

the offers in the past all games: ȳ2 ∈ [0,1].

It should be noted that the average payoff π̄1 and the av-

erage offer x̄1 are memorized and updated by agent 1, and

similarly the average payoff π̄2 and the average rate of ac-

ceptance ȳ2 are memorized and updated by agent 2.

3.1.2. Decision making of agent 2

Agent 2 also makes a decision in a way similar to agent 1;

8 inputs of all the 9 inputs of the neural network for agent 2

are the same as those of agent 1, and the other one is an

offer by agent 1 in the current game. The output layer of

the neural network of agent 2 consists of two nodes which

correspond to the choices of acceptance and rejection for

the offer. The structure of the neural network of agent 2

1Although an offer is represented by a pair (x1, x2) in the previous

section, the offer (x1, x2) is identified only with x1 because x2 = 1− x1.

is depicted in the diagram of Fig. 3b. Inputs of the neural

network for agent 2 are summarized as follows.

[Inputs 1–8] the same as the inputs of agent 1.

[Input 9] an offer by agent 1 in the current game:

x̂1 ∈ {9,8, . . . ,0}.

Fig. 3. Neural networks for (a) agent 1 and (b) agent 2.
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3.2. Utility function incorporating fairness

For modeling the behavior of players in the ultimatum

game, we consider that it is appropriate to incorporate both

learning and fairness in the artificial adaptive agent model

simultaneously. To implement the concept of fairness, we

use utility function as a fitness function in the genetic al-

gorithm which is the basis of the learning mechanism of

our agent-based simulation system. As a utility function

appropriate for this purpose, we employ the utility function

proposed by Fehr and Schmidt [7]; the parameters of the

function seems to be easy to interpret because the function

is linear, and the excess of the payoff of the opponent over

that of self and the reciprocal excess are separated.

When players i and j obtain payoffs πi and π j, respectively,

the utility ui of player i is represented as

ui(πi,π j) = πi−αi max{π j−πi,0}−βi max{πi−π j,0},

i, j = 1,2, i 6= j, (1)

where αi and βi are coefficients; the utility ui(πi,π j) of

player i consists of the payoff of self, the penalty for the

excess of the payoff of the opponent over that of self, and

the penalty for the reciprocal excess. When the payoff of

self exceeds that of the opponent, i.e., πi > π j, ui(πi,π j) =
πi −βi(πi −π j); when the payoff of the opponent exceeds

that of self, i.e., π j > πi, ui(πi,π j) = πi −αi(π j −πi).

3.3. Evolutionary learning through the genetic

algorithm

An agent is prescribed by the fixed number of parameters

in our agent-based simulation system. Forming a string

consisting of these parameters, we use the string as a chro-

mosome in an artificial genetic system. As we mentioned

above, for agent 1, there are the 8 units in the input layer

and the 10 units in the output layer. Let h1 be the num-

ber of units in the hidden layer. Then because the number

of links between nodes is 18h1 and the number of units

in the hidden and the output layers is h1 + 10, the neural

network corresponding to an agent can be governed by the

synaptic weights w1
l , l = 1, . . . ,18h1 and the thresholds θ 1

l ,

l = 1, . . . ,h1 +10. Similarly, for agent 2, the neural network

is also governed by the synaptic weights w2
l , l = 1, . . . ,11h2

and the thresholds θ 2
l , l = 1, . . . ,h2 +2, where h1 and h2 are

the numbers of nodes in the hidden layers. These parame-

ters and the input values determine an action of the agent,

and the synaptic weights and the thresholds are adjusted

through the genetic algorithm so that the initial popula-

tion evolves into the population of agents obtaining larger

payoffs.

We separately arrange two subpopulations of agents 1

and 2; there are N agents in each subpopulation. One

agent is selected from each subpopulation, and two agents

make a pair for playing the game. Agents repeatedly paly

the ultimatum game, and accumulate the payoffs obtained

in each stage game. Because the value of the utility Eq. (1)

is directly used as a fitness in the artificial genetic system,

agents obtaining larger utilities are likely to survive.

We start by describing how the parameters prescribing an

agent are initialized. In the experiment, because experi-

menters explain a procedure of the ultimatum game, sub-

jects should understand the payoff structure of the game.

Thus, it is not appropriate that artificial agents start to play

the game without any prior knowledge of the game; we give

the artificial agents some knowledge of the game before

playing it. We implement this by adjusting the parameters

of the neural network which are the synaptic weights and

the thresholds through the error back propagation algorithm

(e.g., [12]) with the teacher signals.

A chromosome of agent 1 consists of the synaptic weights

w1
l , l = 1, . . . ,18h1 and the thresholds θ 1

l , l = 1, . . . ,h1 +10,

and that of agent 2 consists of the synaptic weights w2
l ,

l = 1, . . . ,11h2 and the thresholds θ 2
l , l = 1, . . . ,h2 +2. Ini-

tial values of the parameters wi
l and θ i

l are set to random

values in [−1,1] before the adjustment by the error back

propagation algorithm.

We give teacher signals to the neural network for agent 1 so

as to make offers yielding larger payoffs of self. Because

the outputs out11,out12, . . . ,out110 of the neural network for

agent 1 correspond to the offers (9,1),(8,2), . . . ,(0,10),
the teacher signals of 1,8/9, . . . ,0 are given to the outputs

out11,out12, . . . ,out110 for any set of the inputs given at ran-

dom.

For agent 2, based on the experimental results, the param-

eters of the neural network is adjusted by using the error

back propagation algorithm such that the possibility of ac-

Fig. 4. Flowchart of the agent-based simulation model.
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ceptance is equal to that of rejection for the most unfair offer

(10,0), the possibility of acceptance increases as the payoff

of agent 2 in an offer becomes larger, and agent 2 perfectly

accepts the profitable offers with agent 2’s quotas larger

than 6. To be more precise, when input 9 corresponding to

agent 1’s quota in an offer is x̂1 and inputs 1 to 8 are ran-

domly given, the teacher signal, 1
12

(10− x̂1)+0.5, is given

to the output out21 corresponding to acceptance of an offer,

and the teacher signal to the output out22 is a complement

of 1
12

(10− x̂1)+ 0.5 on 1.

We arrange 30 sets of the teacher signals for each of

agents 1 and 2, and the parameters of the neural networks

are adjusted by the error back propagation algorithm. In

our agent-based simulation system, there are two subpopu-

lations of N agents for agents 1 and 2, and one agent from

the subpopulation of agent 1 and one from the subpopula-

tion of agent 2 are randomly chosen, and then one pair for

playing the game is formed. The game is played by N pairs

of agents 1 and 2 according to the above mentioned deci-

sion making mechanism. The utilities of agents 1 and 2

are determined by Eq. (1) depending on the outcome of

the game; these utilities are directly used as the fitness in

the genetic algorithm. Because it is known that the algo-

rithm works effectively by enlargement and reduction of the

values of the fitness [10], in our system the fitness is lin-

early scaled. A procedure of the simulation model is sum-

marized in the following and is diagrammatically shown

in Fig. 4.

Step 1: Generation of the initial population. For each

of agents 1 and 2, N individuals are generated.

Step 2: Preliminary learning. By using the error back

propagation algorithm with given teacher signals,

the parameters of the neural network for each in-

dividual are adjusted.

Step 3: Formation of pairs for the game. A pair for

playing the game is formed by selecting one agent

from each of the subpopulations of agents 1 and 2;

by repeating this operation, N pairs are formed.

Step 4: Playing the ultimatum game. In each of the

N pairs, the ultimatum game is played; the de-

cision of each agent is determined by the outputs

of the neural network; and artificial agents obtain

their utilities depending on an outcome (π1,π2) of

the game.

Step 5: Genetic operation. The two subpopulations for

agents 1 and 2 are formed again by gathering the

same type of artificial agents from the N pairs

for playing the game; the genetic operations are

executed to each subpopulation consisting of N in-

dividuals. The utility Eq. (1) of agent 1 or 2 is

directly used as the fitness of an artificial agent in

the genetic algorithm, and the fitness is linearly

scaled.

If the number of periods reaches a given final gen-

eration of the simulation, the procedure stops.

Step 5-1: Reproduction. As a reproduction operator, the

roulette wheel selection is adopted. By a roulette

wheel with slots sized by the probability

ps
i j =

fi j

∑N
j=1 fi j

, i = 1,2, (2)

each chromosome is selected into the next gen-

eration, where fi j is the fitness of the jth indi-

vidual of agent i.

Step 5-2: Crossover. A single-point crossover operator is

applied to any pair of chromosomes with the

probability of crossover pc. Namely, a point of

crossover on the chromosomes is randomly se-

lected and then two new chromosomes are cre-

ated by swapping subchromosomes which are

the right side parts of the selected point of

crossover on the original chromosomes.

For offsprings of agent 1, the average payoff and

the average offer are given by averaging those of

the parents with the probabilities corresponding

to the sizes of the swapped subchromosomes;

similarly, for agent 2, the average payoff and the

average rate of acceptance are calculated.

Step 5-3: Mutation. With a given small probability

of mutation pm, each gene which represents

a synaptic weight or a threshold in a chromo-

some is randomly changed. The selected gene

is replaced by a random number in [−1,1].

4. Results of the simulations

We develop the artificial agents in this agent-based simula-

tion system so as to imitate the behavior of human subjects

in a laboratory experiment by Roth et al. [20], and examine

the result of the experimental research through the simu-

lation analysis. First, we identify the standard set of the

four parameters α1, β1, α2, β2 in the utility function (1) by

minimizing the error of mean square between the result of

the simulation and that of the experiment. After identified

the the standard set of the parameters, we examine effect

of the parameters characterizing the behavior of the human

subjects.

Artificial adaptive agents have mechanisms of decision

making and learning based on a neural network and a ge-

netic algorithm, and the parameters of the neural network

and the genetic algorithm are set to the following values:

– the number of nodes in the neural network for

agent 1:

8 in the input layer, 10 in the hidden layer, 10 in the

output layer;

– the number of nodes in the neural network for

agent 2:

9 in the input layer, 11 in the hidden layer, 2 in the

output layer;
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– the size of subpopulations for agents 1 and 2:

N = 100;

– the maximal generation of the genetic algorithms:

MaxGen = 3000;

– the parameters of genetic operations:

crossover pc = 0.5, mutation pm = 0.001, generation

gap g = 0.8.

In this paper, the simulation system is executed 100 runs

for each setting of the parameters. Because all prepara-

tory runs converge at certain level until 2500 periods, we

set the maximal generation of the simulation to 3000 pe-

riods. Numerical data of the simulation are given by av-

eraging each observed value in the last 150 generations of

the 100 runs.

4.1. Identification of the standard set of the parameters

By varying values of the parameters, we find the standard

set of the parameters approximating the behavior of human

subjects. There are four parameters α1, β1, α2 and β2 in

the utility function, and especially, the parameter β2 is the

penalty coefficient for the excess of the payoff of player 2’s

self over the payoff of the opponent in the utility function

of player 2. When player 1 makes an offer such that the

payoff of player 2 is larger than the payoff of player 1’s self,

i.e., (x1, x2), x1 < x2, this penalty is valid. Although it is

true that such an offer is unfair, it is not natural that player 2

is penalized for accepting the offer. From this reason, fix-

ing the value of β2 at β2 = 0, the values of α1 and β1

are varied from 0 to 1 at intervals of 0.1, and the value

of α2 is varied from 0 to 2.

In order to find the standard set of the parameters imitating

the behavior of human subjects and successfully approxi-

mating the result of the experiment, we use the error of

mean square which is represented by

E(α1,β1,α2,β2) =
0

∑
x1=9

(psim
x1

−psub
x1

)2+
0

∑
x1=9

(qsim
x1

−qsub
x1

)2,

(3)

where psub
x1

and psim
x1

are the fraction of the human subjects

and the artificial agents making an offer x1 ∈ {9,8, . . . ,0}
in the experiment and in the simulation, respectively;

qsub
x1

and qsim
x1

are the fraction of the human subjects and

the artificial agents accepting the offer x1 in the experiment

and in the simulation, respectively.

By executing 100 runs for all the 2541 cases of param-

eter variations, it is found that the standard set of the

parameters is (α1,β1,α2,β2) = (0.4,0,1.1,0) minimizing

the error of mean square Eq. (3) and the minimum is

E(α1,β1,α2,β2) = 0.1263; at the standard set of the pa-

rameters (α1,β1,α2,β2) = (0.4,0,1.1,0), the distribution

of offers by agent 1 and the rate of acceptance for any offer

are given in Fig. 5 with the behavior of human subjects in

the experiment. The values of the parameters in the util-

ity function of agent 1 are α1 = 0.4 and β1 = 0, and the

penalty is not larger than 40% of the excess of the payoff

of an agent over that of the other. In contrast, the value

of the coefficient β2 = 1.1 in the utility function of agent 2

are considerably large, and therefore it appears that agent 2

strongly ask the opponent for a fair offer compared with

agent 1.

Fig. 5. Behavior of artificial agents and human subjects at the

standard set of the parameters: (a) distribution of offers; (b) rate

of acceptance.

The behavior of agents 1 and 2 can be characterized by the

distribution of offers and the rate of acceptance, respec-

tively. As can be seen in Fig. 5, all in all, the behavior of

artificial agents in the simulation successfully approximates

that of human subjects in the experiment. We will begin

by examining the offers by agent 1. The frequencies of the

offers in which the quota of agent 1 is larger than 4, x1 > 4,

by the artificial agents in the simulation are similar to those

by the human subjects in the experiments. For the offers

such that the quota of agent 1 is smaller than or equal to 4,

x1 ≤ 4, the behavior of the artificial agents in the simula-

tion is almost the same as that of the human subjects in

the experiment. Next, we look into the rate of acceptance.

For the offers in which the quota of agent 1 is larger than

or equal to 4, x1 ≥ 4, both of the rates of the simulation

and the experiment denote a similar tendency; for the other

offers, x1 ≤ 3, however, the rate of the simulation is slightly

smaller than that of the experiment. This is attributed to

the fact that as seen in the graph of Fig. 5a, the offers in

which the quota of agent 1 is smaller than or equal to 4

are hardly proposed in the simulation and therefore the ar-
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tificial agents cannot sufficiently learn how they respond

such offers.

In Fig. 6, we show transitions of the average offer by agent 1

and the average rate of acceptance by agent 2 in the early

Fig. 6. Transitions of the average offer and acceptance rate.

generations of the simulation. As seen in the figure, at the

beginning of the simulation, agent 1 makes the offer (9,1)
and agent 2 accepts it with the probability of about 0.55;

it is conceivable that the couple of these actions is due

to the preliminary learning of the neural network. Just

after the start of the learning by the genetic algorithm,

agent 2 begins to reject extremely unfair offers such as the

offer (9,1). However, as a quota x1 of agent 1 in an offer

(x1,x2) decreases by a high incidence of rejection of unfair

offers by agent 2, the rate of acceptance of the offer in-

creases; after 150 generations, the average offer by agent 1

converges to an appreciably fair offer (6.15,3.85) and the

average rate of acceptance by agent 2 also converges to

about 0.68.

Table 1

Utilities of agents 1 and 2 at the standard set

of the parameters

x1 9 8 7 6 5 4 3 2 1 0

u1 9 8 7 6 5 3.2 1.4 −0.4 −2.2 −4.0

u2 −7.8 −4.6 −1.4 1.8 5 6 7 8 9 10

In Table 1, the utilities of agents 1 and 2 are shown

at the standard set of the parameters (α1,β1,α2,β2) =
(0.4,0,1.1,0). As seen in the table, the utility of agent 1 is

an increasing function with the quota x1 of agent 1; the util-

ity of agent 2 is a decreasing function with x1. Especially,

because the value of α2, which is the penalty coefficient

for the excess of the payoff of agent 1 over the payoff of

agent 2’s self in the utility of agent 2, is relatively large,

the utilities of agent 2 become negative when the quota

x1 of agent 1 is larger than or equal to 7, x1 ≥ 7. From

the fact that the utility of agent 2 is zero when agent 2

rejects an offer, it is preferable for agent 2 to reject such

offers. Such behavior of agent 2 can be interpreted as the

punishment for unfair proposals by agent 1. As can be seen

in Fig. 6, through the repeated rejections by agent 2, agent 1

gradually lowers a quota of agent 1’s self in offers. This

process can be explained by the learning of agent 1. For

the offer (6,4), conversely it is advantageous for agent 2 to

accept it. It seems to be for this reason that the frequency

of the offer (6,4) is the largest.

From the result of the simulation, it is conceivable that

the developed agent-based simulation system successfully

approximates the behavior of human subjects in the experi-

ment by incorporating the fairness in the learning mech-

anism of the artificial agents. Moreover, while Abbink

et al. [1] conclude that a fairness motive is a better ex-

planation for why player 2 rejects unfair offers compared

with learning, our result is consistent with their argument.

While we have found the standard set of the parameters

imitating the behavior of human subjects by varying values

of the parameters, we should examine effects of individual

parameters on the behavior of the artificial agents. To verify

that the behavior of agent 1 is mainly revised through the

learning, by varying values of the parameters α1 and β1

in the utility function of agent 1, we examine change of

the behavior of the artificial agents. Moreover, while we

suppose that fairness and the corresponding punishment

largely explain the behavior of agent 2, to confirm this

argument, we also investigate change of the behavior of the

artificial agents by varying value of the parameter α2 in the

utility function of agent 2.

4.2. Effect of learning on the behavior of agent 1

Fixing the values of α1, α2 and β2 at the standard setting

α1 = 0.4, α2 = 1.1 and β2 = 0, we vary the value of β1 from

0 to 0.5 at intervals of 0.1. The result of this treatment is

given in Fig. 7 showing the average offer and the average

rate of acceptance.

Fig. 7. Change of the behavior with respect to the parameter β1:

(a) average offer; (b) rate of acceptance.
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As can be seen in Fig. 7, the average quota x1 of agent 1 in

offers remains almost the same in the range 0.0≤ β1 ≤ 0.4;

when β1 = 0.5, because the number of agent 1 making

fairer offers increases, the average quota x1 decreases be-

low 6. Although the average rate of acceptance is rel-

atively high when β1 = 0.0 compared with the cases of

β1 = 0.1,0.2,0.3,0.4, the average rates of acceptance are

almost the same when β1 = 0.1,0.2,0.3,0.4. On the other

hand, when β1 = 0.5, because the average quota x1 de-

creases and offers become fair, the average rate of accep-

tance obviously rises.

Fig. 8. Change of the behavior with respect to the parameter α1:

(a) average offer; (b) rate of acceptance.

For sensitivity with respect to the parameter α1, the aver-

age offer and the average rate of acceptance are similarly

given in Fig. 8. As can be seen in Fig. 8, the average

quota x1 of agent 1 in offers remains almost same in

the range 0.0 ≤ α1 ≤ 0.5. Moreover, from the graph of

Fig. 8a, it is found that there is little linkage between

the average rate of acceptance of agent 2 and the change of

the value of α1.

From the above observation, the sensitivity of the behav-

ior of the artificial agents to the change of parameter β1

or α1 from zero is not so high, and it would be said that

introduction of the parameter β1 or α1 does not have a ma-

jor function in explanation of the behavior of the artificial

agents. Thus, the effect of the parameter of fairness is rel-

atively small, and it appears that the behavior of agent 1 is

mainly revised through the learning.

When π1 > π2, the utility function of agent 1 is represented

as u1(π1,π2) = (1− 2β1)π1 + 10β1. If β1 < 0.5, because

the coefficient of π1 is smaller than one, the influence of

agent 2’s decision of acceptance or rejection on the utility of

agent 1 is evidently larger than that of the offer by agent 1’s

self. For the parameter α1, because agent 1 rarely makes

offers such that the quota of agent 1 is smaller than or equal

to 4, x1 ≤ 4, and α1 is valid when π1 < π2, the parameter α1

has little influence on the behavior of agent 1. From this

viewpoint, it is also found that the behavior of agent 1 be

strongly affected by learning through a series of actions of

agent 2.

4.3. Effect of punishment on the behavior of agent 2

To observe effect of the punishment on the behavior of

agent 2, we conduct an additional treatment by varying

the value of α2 from 0 to 2 at intervals of 0.1, fixing

the values of α1, β1 and β2 at α1 = 0, β1 = 0 and β2 = 0.

The result of this treatment is given in Fig. 9.

Fig. 9. Change of the behavior with respect to the parameter α2:

(a) average offer; (b) rate of acceptance.

As can be seen in Fig. 9, the average quota x1 of agent 1

in offers specifically decreases in the range 0.1 ≤ α2 ≤
0.8, and the average rate of acceptance steeply drops from

α2 = 0.1 to 0.2. It is just conceivable that the behavior

of the artificial agents is very sensitive to the change of

parameter α2 from zero, and the behavior of agent 1 is

mainly explained by introduction of the parameter α2 of

the fairness and punishment.

5. Conclusions

We have developed agent-based simulation system for an-

alyzing the behavior of human subjects in the experi-

ment. The learning mechanism incorporating the concept
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of fairness in the system efficiently works, and it is shown

that our artificial adaptive agents successfully approximates

the behavior of human subjects in the laboratory experi-

ment by Roth et al. [20]. Through the simulation analysis,

we have verified that the behavior of agent 1 is mainly re-

vised through the learning, and fairness and corresponding

punishment largely explain the behavior of agent 2.
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